Chao Tang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5063482/publications.pdf

Version: 2024-02-01

101543 155660 4,058 141 36 55 citations h-index g-index papers 141 141 141 1822 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Theoretical study of SF6 decomposition products adsorption on metal oxide cluster-modified single-layer graphene. Journal of Industrial and Engineering Chemistry, 2022, 105, 278-290.	5.8	19
2	TiO2–Doped GeSe Monolayer: A highly selective gas sensor for SF6 decomposed species detection based on DFT method. Applied Surface Science, 2022, 572, 151212.	6.1	44
3	Adsorption and gas-sensing properties of Pdn-GaNNTs to C2H2 and H2 gases. Physica E: Low-Dimensional Systems and Nanostructures, 2022, 136, 115004.	2.7	9
4	Interfacial interactions between different metal oxides and dibenzyl disulfide in mineral insulating oil. Journal of Molecular Liquids, 2022, 347, 118359.	4.9	0
5	Adsorption and sensing performances of transition metal (Ag, Pd, Pt, Rh, and Ru) modified WSe2 monolayer upon SF6 decomposition gases (SOF2 and SO2F2). Applied Surface Science, 2022, 581, 152365.	6.1	61
6	Transition metal oxides (NiO, SnO2, In2O3) modified graphene: A promising candidate to detect and scavenge CO, C2H2, and CH4 gases. Diamond and Related Materials, 2022, 123, 108856.	3.9	15
7	A review onÂthe research progress and future development of nanoâ€modified cellulose insulation paper. IET Nanodielectrics, 2022, 5, 63-84.	4.1	24
8	Nano-Modified Meta-Aramid Insulation Paper with Advanced Thermal, Mechanical, and Electrical Properties. Processes, 2022, 10, 78.	2.8	6
9	Novel Characteristic Quantities for Determining the Moisture State of Oil-Impregnated Cellulose Insulation Using the Extended Debye Model. IEEE Transactions on Dielectrics and Electrical Insulation, 2022, 29, 1087-1094.	2.9	4
10	Adsorption behavior of metal oxides (CuO, NiO, Ag2O) modified GeSe monolayer towards dissolved gases (CO, CH4, C2H2, C2H4) in transformer oil. Journal of Industrial and Engineering Chemistry, 2022, 112, 134-145.	5.8	25
11	Density functional theory study of Pd, Pt, and Au modified GeSe for adsorption and sensing of dissolved gases in transformer oil. Surfaces and Interfaces, 2022, 31, 101994.	3.0	9
12	First-principles study of the adsorption behavior and sensing properties of C2H4 and C2H6 molecules on (CuO/TiO2)n (n=1–3) cluster modified MoTe2 monolayer. Surfaces and Interfaces, 2022, 31, 102003.	3.0	8
13	A DFT study of adsorption properties of SO2, SOF2, and SO2F2 on ZnO/CuO doped graphene. Diamond and Related Materials, 2022, 126, 109103.	3.9	15
14	Gas-Sensing Property of TM-MoTe2 Monolayer towards SO2, SOF2, and HF Gases. Molecules, 2022, 27, 3176.	3.8	4
15	A new type of mixed vegetable insulating oil with better kinematic viscosity and oxidation stability. Journal of Molecular Liquids, 2022, 360, 119512.	4.9	7
16	Adsorption of Greenhouse Decomposition Products on Ag ₂ O–SnS ₂ and CuO–SnS ₂ Surfaces. ACS Omega, 2022, 7, 21043-21051.	3.5	3
17	Differences analysis of water molecular diffusion behaviors in vegetable oil and mineral oil under temperature field. Journal of Molecular Liquids, 2021, 323, 115030.	4.9	13
18	Molecular simulation on the mechanical and thermal properties of carbon nanowire modified cellulose insulating paper. Composite Structures, 2021, 261, 113283.	5.8	24

#	Article	IF	CITATIONS
19	The Effect of Nano-Silica Modified With Silane Coupling Agents on the Diffusion Behavior of Water Molecules in Palm Oil Based on Molecular Simulation. IEEE Access, 2021, 9, 82213-82220.	4.2	6
20	Simulation effect of SiO2 nanoparticles on the water molecules diffusion inside insulating oil at different temperatures. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 610, 125738.	4.7	11
21	Au (nÂ=Â1–4) cluster doped MoSe2 nanosheet as a promising gas-sensing material for C2H4 gas in oil-immersed transformer. Applied Surface Science, 2021, 541, 148356.	6.1	45
22	Adsorption property of CO, NO, and NO2 gas molecules on Co3-MoSe2 monolayer. Sensors and Actuators A: Physical, 2021, 319, 112547.	4.1	13
23	Molecular Dynamics Study on Kinematic Viscosity of Peanut Oil Methyl Ester. , 2021, , .		O
24	Insulating Paper Cellulose with High Mechanical Performance and Low Polarizability: The Effect of Doping Concentration on Polyhedral Oligomeric Silsesquioxanesâ€Modified Cellulose. Advanced Engineering Materials, 2021, 23, 2100022.	3.5	3
25	Molecular Simulation of Improved Mechanical Properties and Thermal Stability of Insulation Paper Cellulose by Modification with Silane-Coupling-Agent-Grafted Nano-SiO2. Processes, 2021, 9, 766.	2.8	5
26	Effect of Aminosilane Coupling Agent-Modified Nano-SiO2 Particles on Thermodynamic Properties of Epoxy Resin Composites. Processes, 2021, 9, 771.	2.8	4
27	A comparative simulation: Difference between chemical grafting and physical doping of cellulose by using polysilsesquioxane. Chinese Journal of Chemical Physics, 2021, 34, 165-172.	1.3	0
28	Cellulose insulation paper with high thermal stability and low polarizability: influence of different substituents on POSS modified cellulose insulating paper. Cellulose, 2021, 28, 6023.	4.9	22
29	Gas-sensing properties of Ptn-doped WSe2 to SF6 decomposition products. Journal of Industrial and Engineering Chemistry, 2021, 97, 452-459.	5.8	75
30	Adsorption behaviors of SF6 decomposition gas on Ni-doped ZIF-8:A first-principles study. Vacuum, 2021, 187, 110131.	3.5	8
31	Sensing Characteristics of Toxic Câ,"Fâ,‡N Decomposition Products on Metallic- Nanoparticle Co-Doped BN Monolayer: A First Principles Study. IEEE Sensors Journal, 2021, 21, 13082-13089.	4.7	20
32	Gas-Sensing Properties of Cu ₂ S–MoSe ₂ Nanosheets to NO ₂ and NH ₃ Gases. ACS Omega, 2021, 6, 16517-16523.	3.5	11
33	Adsorption properties of Ag2O–MoSe2 towards SF6 decomposed products. Vacuum, 2021, 189, 110248.	3.5	37
34	Simulation of the diffusion behavior of water molecules in palm oil and mineral oil at different temperatures. Renewable Energy, 2021, 174, 909-917.	8.9	20
35	Effect of nano-SiO ₂ particles modified by 3-aminopropyltriethyloxy silane on mechanical properties and thermal stability of meta-aramid insulation paper. Molecular Simulation, 2021, 47, 1349-1357.	2.0	1
36	Co, Rh decorated GaNNTs for online monitoring of characteristic decomposition products in oil-immersed transformer. Applied Surface Science, 2021, 561, 150072.	6.1	7

#	Article	IF	Citations
37	Adsorption and gas sensing properties of CuO modiï¬ed MoSe2 to C3F7CN decomposition products. Materials Today Communications, 2021, 28, 102677.	1.9	4
38	Adsorption and gas-sensing properties of C2H4, CH4, H2, H2O on metal oxides (CuO, NiO) modified SnS2 monolayer: A DFT study. Results in Physics, 2021, 28, 104680.	4.1	37
39	Pd and Pt decorated GeSe monolayers as promising materials for SOF2 and SO2F2 sensing. Applied Surface Science, 2021, 560, 150028.	6.1	32
40	Adsorption and sensing performances of ZnO-g-C3N4 monolayer toward SF6 decomposition products. Physica E: Low-Dimensional Systems and Nanostructures, 2021, 134, 114909.	2.7	12
41	Electronic properties of Ptn ($n\hat{A}$ = $\hat{A}4$, 13, 15) nanoclusters decorated MoSe2 monolayer and its effect on C2H2 adsorption: First principles study. Applied Surface Science, 2021, 563, 150375.	6.1	11
42	First principles analysis of SO2, H2S adsorbed on Fe-ZnS surface. Sensors and Actuators A: Physical, 2021, 329, 112827.	4.1	3
43	Equivalent Broadband Electrical Circuit of Synchronous Machine Winding for Frequency Response Analysis Based on Gray Box Model. IEEE Transactions on Energy Conversion, 2021, 36, 3512-3521.	5. 2	9
44	Adsorption property of Co, Rh, and Pd-embedded g-C3N4 monolayer to SO2F2 gas. Journal of Materials Research and Technology, 2021, 15, 4790-4799.	5 . 8	13
45	A DFT study of dissolved gas (C2H2, H2, CH4) detection in oil on CuO-modified BNNT. Applied Surface Science, 2020, 500, 144030.	6.1	123
46	Analysis of nano-SiO2 affecting the acids diffusion in the interface between oil and cellulose paper. Chemical Physics, 2020, 529, 110557.	1.9	12
47	Effects of hydrogen sulfide on the mechanical and thermal properties of cellulose insulation paper: A molecular dynamics simulation. Materials Chemistry and Physics, 2020, 240, 122153.	4.0	26
48	Agglomeration mechanism and restraint measures of SiO ₂ nanoparticles in meta-aramid fibers doping modification via molecular dynamics simulations. Nanotechnology, 2020, 31, 165702.	2.6	24
49	Adsorption properties of pristine and Co-doped TiO2($1\hat{A}0\hat{A}1$) toward dissolved gas analysis in transformer oil. Applied Surface Science, 2020, 507, 145163.	6.1	79
50	Gas-sensing properties and mechanism of Pd-GaNNTs for air decomposition products in ring main unit. Applied Surface Science, 2020, 531, 147293.	6.1	58
51	First-Principles Study on the Potential of Monolayer Ti ₂ N as an Adsorbent for Dissolved H ₂ and C ₂ H ₂ Gases in Oil. ACS Applied Nano Materials, 2020, 3, 12346-12354.	5.0	6
52	Effect of water on the diffusion of small molecular weight acids in nano-SiO2 modified insulating oil. Journal of Molecular Liquids, 2020, 314, 113670.	4.9	21
53	Effects of Different Grafting Density of Amino Silane Coupling Agents on Thermomechanical Properties of Cross-Linked Epoxy Resin. Polymers, 2020, 12, 1662.	4.5	11
54	First-Principles Calculations of Gas-Sensing Properties of Pd Clusters Decorated AlNNTs to Dissolved Gases in Transformer Oil. IEEE Access, 2020, 8, 162692-162700.	4.2	6

#	Article	IF	CITATIONS
55	Influence of Pd Clusters Doping on Gas Sensing Properties of TiOâ,,(101) Nanotubes to SFâ,† Decomposition Products. IEEE Access, 2020, 8, 205282-205288.	4.2	O
56	Improved Winding Mechanical Fault Type Classification Methods Based on Polar Plots and Multiple Support Vector Machines. IEEE Access, 2020, 8, 216271-216282.	4.2	8
57	Reactive molecular dynamics research on influences of water on aging characteristics of PMIA insulation paper. Journal of Applied Physics, 2020, 127, 105107.	2.5	4
58	Palladium modified MoS2 monolayer for adsorption and scavenging of SF6 decomposition products: A DFT study. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 123, 114178.	2.7	42
59	Adsorption and gas-sensing properties of Pt2–GaNNTs for SF6 decomposition products. Applied Surface Science, 2020, 524, 146570.	6.1	56
60	Molecular dynamics simulation on the distribution and diffusion of different sulfides in oil-paper insulation systems. Journal of Molecular Liquids, 2020, 314, 113678.	4.9	10
61	Adsorption of C2H2, CH4 and CO on Mn-doped graphene: Atomic, electronic, and gas-sensing properties. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 119, 113959.	2.7	86
62	The actual measurement and analysis of transformer winding deformation fault degrees by FRA using mathematical indicators. Electric Power Systems Research, 2020, 184, 106324.	3.6	25
63	Comparison of sensing and electronic properties of C2H2 on different transition metal oxide nanoparticles (Fe2O3, NiO, TiO2) modified BNNT (10, 0). Applied Surface Science, 2020, 521, 146463.	6.1	59
64	Platinum modified MoS ₂ monolayer for adsorption and gas sensing of SF ₆ decomposition products: a DFT study. High Voltage, 2020, 5, 454-462.	4.7	85
65	Thermal stability of polyphenylsilsesquioxaneâ€modified metaâ€aramid insulation paper. High Voltage, 2020, 5, 264-269.	4.7	37
66	Thermal Analysis of the Transformer Bushings Subjected to Harmonic Voltages and Currents. , 2020, , .		0
67	TiO2 nanotubes based gas-sensing materials for SF6 decompostion products detection: A review. , 2020, , .		0
68	Modeling the Inverse Problem of Dielectric Response of Oil-impregnated-paper Insulation. , 2020, , .		0
69	A Novel Method for the Deterioration State Evaluation of Mineral Insulating Oil by THz Time-Domain Spectroscopy. IEEE Access, 2019, 7, 71167-71173.	4.2	9
70	Classifying Transformer Winding Deformation Fault Types and Degrees Using FRA Based on Support Vector Machine. IEEE Access, 2019, 7, 112494-112504.	4.2	78
71	DFT study of SF6 decomposed products on Pd–TiO2: gas sensing mechanism study. Adsorption, 2019, 25, 1643-1653.	3.0	19
72	Micro-scale effects of nano-SiO ₂ modification with silane coupling agents on the cellulose/nano-SiO ₂ interface. Nanotechnology, 2019, 30, 445701.	2.6	52

#	Article	IF	CITATIONS
73	Gas sensing of graphene and graphene oxide nanoplatelets to ClO2 and its decomposed species. Superlattices and Microstructures, 2019, 135, 106248.	3.1	19
74	Ab Initio Study of SOF ₂ and SO ₂ F ₂ Adsorption on Co-MoS ₂ . ACS Omega, 2019, 4, 2517-2522.	3.5	19
75	Detection of Water Content in Transformer Oil Using Multi Frequency Ultrasonic with PCA-GA-BPNN. Energies, 2019, 12, 1379.	3.1	31
76	Analysis and mechanism of adsorption of naphthenic mineral oil, water, formic acid, carbon dioxide, and methane on meta-aramid insulation paper. Journal of Materials Science, 2019, 54, 8556-8570.	3.7	35
77	DFT-based study on H2S and SOF2 adsorption on Si-MoS2 monolayer. Results in Physics, 2019, 13, 102225.	4.1	38
78	Diagnosing Transformer Winding Deformation Faults Based on the Analysis of Binary Image Obtained From FRA Signature. IEEE Access, 2019, 7, 40463-40474.	4.2	27
79	Effect of different contents of nano-SiO2 particles on water diffusion behavior in insulating oil. AIP Advances, 2019, 9, 105022.	1.3	4
80	Molecular dynamics simulation on the thermodynamic properties of insulating paper cellulose modified by silane coupling agent grafted nano-SiO ₂ . AIP Advances, 2019, 9, 125134.	1.3	24
81	Pt Cluster Modified h-BN for Gas Sensing and Adsorption of Dissolved Gases in Transformer Oil: A Density Functional Theory Study. Nanomaterials, 2019, 9, 1746.	4.1	30
82	Adsorption of SF6 decomposition components over Pd (1 1 1): A density functional theory study. Applied Surface Science, 2019, 465, 172-179.	6.1	112
83	Enhanced mechanical properties and thermal stability of cellulose insulation paper achieved by doping with melamine-grafted nano-SiO2. Cellulose, 2018, 25, 3619-3633.	4.9	51
84	The sensing mechanism of N-doped SWCNTs toward SF6 decomposition products: A first-principle study. Applied Surface Science, 2018, 440, 846-852.	6.1	72
85	Fabrication and characterization of highly sensitive and selective sensors based on porous NiO nanodisks. Sensors and Actuators B: Chemical, 2018, 259, 604-615.	7.8	85
86	Multi frequency ultrasonic detection of water content in transformer oil with GA-BPNN., 2018, , .		3
87	Molecular Simulation on the Thermal Stability of Meta-Aramid Insulation Paper Fiber at Transformer Operating Temperature. Polymers, 2018, 10, 1348.	4.5	38
88	Space and Interface Charge Simulation of Oil-Paper Insulation with Multi-Layer Oil Gap and Insulation Pressboard. , 2018 , , .		0
89	Reactive Molecular Dynamics Study of Effects of Small-Molecule Organic Acids on PMIA Thermal Decomposition. Journal of Physical Chemistry B, 2018, 122, 10384-10392.	2.6	10
90	The Effect and Associate Mechanism of Nano SiO2 Particles on the Diffusion Behavior of Water in Insulating Oil. Materials, 2018, 11, 2373.	2.9	19

#	Article	IF	Citations
91	Effect of Aminosilane Coupling Agents with Different Chain Lengths on Thermo-Mechanical Properties of Cross-Linked Epoxy Resin. Nanomaterials, 2018, 8, 951.	4.1	27
92	Terahertz Time Domain Spectroscopy of Transformer Insulation Paper after Thermal Aging Intervals. Materials, 2018, 11, 2124.	2.9	13
93	Influence of Polymethylsilsesquioxane Content to the Thermal Stability of Meta-Aramid Fiber Insulation Paper. Materials, 2018, 11, 2317.	2.9	11
94	Thermal stability improvement of polysiloxane-grafted insulating paper cellulose in micro-water environment. AIP Advances, 2018, 8, .	1.3	7
95	Electrospun ZnO–SnO2 Composite Nanofibers and Enhanced Sensing Properties to SF6 Decomposition Byproduct H2S. Frontiers in Chemistry, 2018, 6, 540.	3.6	48
96	Ni-CNT Chemical Sensor for SF6 Decomposition Components Detection: A Combined Experimental and Theoretical Study. Sensors, 2018, 18, 3493.	3.8	24
97	Theoretical study of the adsorption of SF6 decomposition components on Ni($1\hat{a}\in 1\hat{a}\in 1$) surface. Computational Materials Science, 2018, 152, 248-255.	3.0	28
98	Adsorption of SF6 decomposition components on Pt3-TiO2(1†O†1) surface: A DFT study. Applied Surface Science, 2018, 459, 242-248.	6.1	90
99	Review of Research Progress on the Electrical Properties and Modification of Mineral Insulating Oils Used in Power Transformers. Energies, 2018, 11, 487.	3.1	7 5
100	Synthesis and Characterization of Highly Sensitive Hydrogen (H2) Sensing Device Based on Ag Doped SnO2 Nanospheres. Materials, 2018, 11, 492.	2.9	29
101	Preparation Nano-Structure Polytetrafluoroethylene (PTFE) Functional Film on the Cellulose Insulation Polymer and Its Effect on the Breakdown Voltage and Hydrophobicity Properties. Materials, 2018, 11, 851.	2.9	20
102	Molecular Dynamics Simulations on the Thermal Decomposition of Meta-Aramid Fibers. Polymers, 2018, 10, 691.	4.5	21
103	A DFT Study on the Adsorption of H2S and SO2 on Ni Doped MoS2 Monolayer. Nanomaterials, 2018, 8, 646.	4.1	120
104	Molecular simulation and experimental analysis of Al2O3-nanoparticle-modified insulation paper cellulose. IEEE Transactions on Dielectrics and Electrical Insulation, 2017, 24, 1018-1026.	2.9	43
105	Thermal stability and dielectric properties of nano-SiO2-doped cellulose. Applied Physics Letters, 2017, 111, .	3.3	21
106	The performance improvement of aramid insulation paper by nano-SiO2 modification. IEEE Transactions on Dielectrics and Electrical Insulation, 2017, 24, 2400-2409.	2.9	41
107	Fabrication of Al2O3 Nano-Structure Functional Film on a Cellulose Insulation Polymer Surface and Its Space Charge Suppression Effect. Polymers, 2017, 9, 502.	4.5	30
108	Interfacial Hydrogen Bonds and Their Influence Mechanism on Increasing the Thermal Stability of Nano-SiO2-Modified Meta-Aramid Fibres. Polymers, 2017, 9, 504.	4.5	58

#	Article	IF	CITATIONS
109	Effect of Moisture on Mechanical Properties and Thermal Stability of Meta-Aramid Fiber Used in Insulating Paper. Polymers, 2017, 9, 537.	4.5	36
110	Thermal Stability of Modified Insulation Paper Cellulose Based on Molecular Dynamics Simulation. Energies, 2017, 10, 397.	3.1	14
111	Selection of Optimal Polymerization Degree and Force Field in the Molecular Dynamics Simulation of Insulating Paper Cellulose. Energies, 2017, 10, 1377.	3.1	51
112	Identification of Power Transformer Winding Mechanical Fault Types Based on Online IFRA by Support Vector Machine. Energies, 2017, 10, 2022.	3.1	18
113	The Effect of PMMA Pore-Forming on Hydrogen Sensing Properties of Porous SnO ₂ Thick Film Sensor. Science of Advanced Materials, 2017, 9, 1350-1355.	0.7	13
114	Molecular simulation research on the micro effect mechanism of interfacial properties of nano SiO2/meta-aramid fiber. International Journal of Heat and Technology, 2017, 35, 123-129.	0.6	22
115	Progress of Space Charge Research on Oil-Paper Insulation Using Pulsed Electroacoustic Techniques. Energies, 2016, 9, 53.	3.1	25
116	Study on the characteristic decomposition components of air-insulated switchgear cabinet under partial discharge. AIP Advances, 2016, 6, .	1.3	14
117	Molecular dynamics simulations of the effect of shape and size of SiO2 nanoparticle dopants on insulation paper cellulose. AIP Advances, 2016, 6, .	1.3	20
118	Improvement of thermal stability of insulation paper cellulose by modified polysiloxane grafting. Applied Physics Letters, 2016, 109, .	3.3	14
119	Research on thickness ratio and multilayers effect on the oil and paper space charge distribution. , $2016, \ldots$		0
120	Molecular dynamics simulation of grafting and modification of insulation paper cellulose. , 2016, , .		2
121	The space charge behaviors of insulation paper immersed by mineral oil and MIDEL 7131 after thermal ageing. , 2016 , , .		9
122	Analysis of adsorption properties of typical partial discharge gases on Ni-SWCNTs using density functional theory. Applied Surface Science, 2016, 379, 47-54.	6.1	104
123	Theoretical and experimental study on competitive adsorption of SF6 decomposed components on Au-modified anatase (101) surface. Applied Surface Science, 2016, 387, 437-445.	6.1	28
124	Influence of humidity and voltage on characteristic decomposition components under needle-plate discharge model. IEEE Transactions on Dielectrics and Electrical Insulation, 2016, 23, 2633-2640.	2.9	12
125	Preparation and Application of TiO2 Nanotube Array Gas Sensor for SF6-Insulated Equipment Detection: a Review. Nanoscale Research Letters, 2016, 11, 302.	5.7	45
126	First-principles study of SF6 decomposed gas adsorbed on Au-decorated graphene. Applied Surface Science, 2016, 367, 259-269.	6.1	141

#	Article	IF	CITATIONS
127	Influence of oil aging on the space charge dynamics of oilâ€immersed paper insulation under a DC electric field. IEEJ Transactions on Electrical and Electronic Engineering, 2015, 10, 1-11.	1.4	8
128	Detection of Dissolved Carbon Monoxide in Transformer Oil Using 1.567 <mml:math id="M1" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi mathvariant="bold-italic">μ</mml:mi></mml:mrow></mml:math> m Diode Laser-Based Photoacoustic Spectroscopy. Journal of Spectroscopy, 2015, 2015, 1-7.	1.3	7
129	Research on Acetylene Sensing Properties and Mechanism of SnO ₂ Based Chemical Gas Sensor Decorated with Sm _{2} O _{3} . Journal of Nanotechnology, 2015, 2015, 1-7.	3.4	13
130	Space charge dynamics in oil-impregnated pressboard under AC electric field. , 2015, , .		6
131	Experimental analyses and molecular simulation of the thermal aging of transformer insulation paper. IEEE Transactions on Dielectrics and Electrical Insulation, 2015, 22, 3608-3616.	2.9	23
132	Adsorption of gases from SF6 decomposition on aluminum-doped SWCNTs: a density functional theory study. European Physical Journal D, 2015, 69, 1.	1.3	31
133	The influence and mechanism of nano Al ₂ O ₃ to the thermal stability of cellulose insulation paper. Zhongguo Kexue Jishu Kexue/Scientia Sinica Technologica, 2015, 45. 1167-1179.	0.5	16
134	A simulation of Pd-doped SWCNTs used to detect SF 6 decomposition components under partial discharge. Applied Surface Science, 2014, 315, 196-202.	6.1	71
135	The Insulation Properties of Oil-Impregnated Insulation Paper Reinforced with Nano-TiO ₂ . Journal of Nanomaterials, 2013, 2013, 1-7.	2.7	35
136	Analysis on the thermal stability of the amorphous region in insulation paper. , 2013, , .		0
137	Preparation and Electrical Properties of Insulation Paper Composed of SiO2 Hollow Spheres. Energies, 2012, 5, 2943-2951.	3.1	27
138	Influence of moisture on space charge dynamics in multilayer oil-paper insulation. IEEE Transactions on Dielectrics and Electrical Insulation, 2012, 19, 1456-1464.	2.9	62
139	Research on the feature extraction of DC space charge behavior of oil-paper insulation. Science China Technological Sciences, 2011, 54, 1315-1324.	4.0	25
140	Space charge behavior in multi-layer oil-paper insulation under different DC voltages and temperatures. IEEE Transactions on Dielectrics and Electrical Insulation, 2010, 17, 775-784.	2.9	143
141	Thermal aging micro-scale analysis of power transformer pressboard. IEEE Transactions on Dielectrics and Electrical Insulation, 2008, 15, 1281-1287.	2.9	65