Hjalmar Laudon

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/506287/hjalmar-laudon-publications-by-year.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 335
 14,460
 62
 102

 papers
 citations
 h-index
 g-index

 386
 16,925
 6
 6.68

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
335	Use of stable Mg isotope ratios in identifying the base cation sources of stream water in the boreal Krycklan catchment (Sweden). <i>Chemical Geology</i> , 2022 , 588, 120651	4.2	O
334	Current water quality guidelines across North America and Europe do not protect lakes from salinization <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2022 , 119,	11.5	3
333	Global Patterns and Controls of Nutrient Immobilization on Decomposing Cellulose in Riverine Ecosystems. <i>Global Biogeochemical Cycles</i> , 2022 , 36,	5.9	1
332	Overstory dynamics regulate the spatial variability in forest-floor CO2 fluxes across a managed boreal forest landscape. <i>Agricultural and Forest Meteorology</i> , 2022 , 318, 108916	5.8	O
331	Expert assessment of landscape-level conservation strategies in boreal forests for biodiversity, recreation and water quality. <i>Journal for Nature Conservation</i> , 2022 , 67, 126180	2.3	O
330	Reconciling the Carbon Balance of Northern Sweden Through Integration of Observations and Modelling. <i>Journal of Geophysical Research D: Atmospheres</i> , 2021 , 126, e2021JD035185	4.4	О
329	The undetected loss of aged carbon from boreal mineral soils. <i>Scientific Reports</i> , 2021 , 11, 6202	4.9	
328	Assessment of a portable UV-Vis spectrophotometer's performance in remote areas: Stream water DOC, Fe content and spectral data. <i>Data in Brief</i> , 2021 , 35, 106747	1.2	1
327	Northern landscapes in transition: Evidence, approach and ways forward using the Krycklan Catchment Study. <i>Hydrological Processes</i> , 2021 , 35, e14170	3.3	7
326	How catchment characteristics influence hydrological pathways and travel times in a boreal landscape. <i>Hydrology and Earth System Sciences</i> , 2021 , 25, 2133-2158	5.5	6
325	Impacts of litter decay on organic leachate composition and reactivity. <i>Biogeochemistry</i> , 2021 , 154, 99-1	137 8	4
324	How tree species, tree size, and topographical location influenced tree transpiration in northern boreal forests during the historic 2018 drought. <i>Global Change Biology</i> , 2021 , 27, 3066-3078	11.4	4
323	SITES AquaNet: An open infrastructure for mesocosm experiments with high frequency sensor monitoring across lakes. <i>Limnology and Oceanography: Methods</i> , 2021 , 19, 385-400	2.6	3
322	Peatland drainage - a missing link behind increasing TOC concentrations in waters from high latitude forest catchments?. <i>Science of the Total Environment</i> , 2021 , 774, 145150	10.2	14
321	Lake Outflow and Hillslope Lateral Inflows Dictate Thermal Regimes of Forested Streams Draining Small Lakes. <i>Water Resources Research</i> , 2021 , 57, e2020WR028136	5.4	3
320	Assessment of a portable UV-Vis spectrophotometer's performance for stream water DOC and Fe content monitoring in remote areas. <i>Talanta</i> , 2021 , 224, 121919	6.2	2
319	Multiple stressors in small streams in the forestry context of Fennoscandia: The effects in time and space. <i>Science of the Total Environment</i> , 2021 , 756, 143521	10.2	3

(2020-2021)

318	Isotopic Branchpoints: Linkages and Efficiencies in Carbon and Water Budgets. <i>Journal of Geophysical Research G: Biogeosciences</i> , 2021 , 126, e2020JG006043	3.7	
317	Functionally reversible impacts of disturbances on lake food webs linked to spatial and seasonal dependencies. <i>Ecology</i> , 2021 , 102, e03283	4.6	5
316	Moving towards multi-layered, mixed-species forests in riparian buffers will enhance their long-term function in boreal landscapes. <i>Forest Ecology and Management</i> , 2021 , 493, 119254	3.9	2
315	Integrating Discharge-Concentration Dynamics Across Carbon Forms in a Boreal Landscape. <i>Water Resources Research</i> , 2021 , 57, e2020WR028806	5.4	3
314	Where and When to Collect Tracer Data to Diagnose Hillslope Permeability Architecture. <i>Water Resources Research</i> , 2021 , 57, e2020WR028719	5.4	0
313	Preface: Linking landscape organisation and hydrological functioning: from hypotheses and observations to concepts, models and understanding. <i>Hydrology and Earth System Sciences</i> , 2021 , 25, 5277-5285	5.5	O
312	Hydrological control of water quality - Modelling base cation weathering and dynamics across heterogeneous boreal catchments. <i>Science of the Total Environment</i> , 2021 , 799, 149101	10.2	1
311	Use of multiple LIDAR-derived digital terrain indices and machine learning for high-resolution national-scale soil moisture mapping of the Swedish forest landscape. <i>Geoderma</i> , 2021 , 404, 115280	6.7	7
310	From Haymaking to Wood Production: Past Use of Mires in Northern Sweden Affect Current Ecosystem Services and Function. <i>Rural Landscapes</i> , 2021 , 8,	1.8	2
309	From legacy effects of acid deposition in boreal streams to future environmental threats. <i>Environmental Research Letters</i> , 2021 , 16, 015007	6.2	5
308	Stable isotopes of water reveal differences in plant Boil water relationships across northern environments. <i>Hydrological Processes</i> , 2021 , 35, e14023	3.3	11
307	The role of the understory in litter DOC and nutrient leaching in boreal forests. <i>Biogeochemistry</i> , 2020 , 149, 87-103	3.8	9
306	Discrete groundwater inflows influence patterns of nitrogen uptake in a boreal headwater stream. <i>Freshwater Science</i> , 2020 , 39, 228-240	2	3
305	Partitioning growing season water balance within a forested boreal catchment using sap flux, eddy covariance, and a process-based model. <i>Hydrology and Earth System Sciences</i> , 2020 , 24, 2999-3014	5.5	7
304	Changing Source-Transport Dynamics Drive Differential Browning Trends in a Boreal Stream Network. <i>Water Resources Research</i> , 2020 , 56, e2019WR026336	5.4	9
303	Groundwater Carbon Within a Boreal Catchment: Spatiotemporal Variability of a Hidden Aquatic Carbon Pool. <i>Journal of Geophysical Research G: Biogeosciences</i> , 2020 , 125, e2019JG005244	3.7	2
302	Drought alters the biogeochemistry of boreal stream networks. <i>Nature Communications</i> , 2020 , 11, 1795	17.4	16
301	Policy change implications for forest water protection in Sweden over the last 50lyears. <i>Ambio</i> , 2020 , 49, 1341-1351	6.5	10

300	Detecting Cultural Remains in Boreal Forests in Sweden Using Airborne Laser Scanning Data of Different Resolutions. <i>Journal of Field Archaeology</i> , 2020 , 45, 16-28	2	8
299	Forest streams are important sources for nitrous oxide emissions. <i>Global Change Biology</i> , 2020 , 26, 629	-6:4:14	13
298	The concentrations and characteristics of dissolved organic matter in high-latitude lakes determine its ambient reducing capacity. <i>Water Research</i> , 2020 , 169, 115217	12.5	14
297	The Net Landscape Carbon Balance-Integrating terrestrial and aquatic carbon fluxes in a managed boreal forest landscape in Sweden. <i>Global Change Biology</i> , 2020 , 26, 2353	11.4	14
296	A carbon mass-balance budget for a periglacial catchment in West Greenland - Linking the terrestrial and aquatic systems. <i>Science of the Total Environment</i> , 2020 , 711, 134561	10.2	O
295	Contrasting storage-flux-age interactions revealed by catchment inter-comparison using a tracer-aided runoff model. <i>Journal of Hydrology</i> , 2020 , 590, 125226	6	3
294	Heterogeneous CO2 and CH4 patterns across space and time in a small boreal lake. <i>Inland Waters</i> , 2020 , 10, 348-359	2.4	7
293	Trees in African drylands can promote deep soil and groundwater recharge in a future climate with more intense rainfall. <i>Land Degradation and Development</i> , 2020 , 31, 81-95	4.4	5
292	Browning of freshwaters: Consequences to ecosystem services, underlying drivers, and potential mitigation measures. <i>Ambio</i> , 2020 , 49, 375-390	6.5	62
291	Are dissolved organic carbon concentrations in riparian groundwater linked to hydrological pathways in the boreal forest?. <i>Hydrology and Earth System Sciences</i> , 2020 , 24, 1709-1720	5.5	10
29 0	From ecological knowledge to conservation policy: a case study on green tree retention and continuous-cover forestry in Sweden. <i>Biodiversity and Conservation</i> , 2019 , 28, 3547-3574	3.4	6
289	Towards ecologically functional riparian zones: A meta-analysis to develop guidelines for protecting ecosystem functions and biodiversity in agricultural landscapes. <i>Journal of Environmental Management</i> , 2019 , 249, 109391	7.9	34
288	Eu anomalies in soils and soil water from a boreal hillslope transect 🗗 tracer for Holocene lanthanide transport?. <i>Geochimica Et Cosmochimica Acta</i> , 2019 , 267, 147-163	5.5	4
287	Seasonal trends of legacy and alternative flame retardants in river water in a boreal catchment. <i>Science of the Total Environment</i> , 2019 , 692, 1097-1105	10.2	9
286	Current forest carbon fixation fuels stream CO emissions. <i>Nature Communications</i> , 2019 , 10, 1876	17.4	29
285	The carbon balance of a managed boreal landscape measured from a tall tower in northern Sweden. <i>Agricultural and Forest Meteorology</i> , 2019 , 274, 29-41	5.8	16
284	Carbon response to changing winter conditions in northern regions: current understanding and emerging research needs. <i>Environmental Reviews</i> , 2019 , 27, 545-566	4.5	7
283	Soil frost effects on streamflow recessions in a subarctic catchment. <i>Hydrological Processes</i> , 2019 , 33, 1304-1316	3.3	11

(2018-2019)

282	High carbon emissions from thermokarst lakes of Western Siberia. <i>Nature Communications</i> , 2019 , 10, 1552	17.4	53
281	Headwater lakes and their influence on downstream discharge. <i>Limnology and Oceanography Letters</i> , 2019 , 4, 105-112	7.9	11
280	Contrasting responses in dissolved organic carbon to extreme climate events from adjacent boreal landscapes in Northern Sweden. <i>Environmental Research Letters</i> , 2019 , 14, 084007	6.2	4
279	Assessing the influence of soil freezethaw cycles on catchment water storagetlux ge interactions using a tracer-aided ecohydrological model. <i>Hydrology and Earth System Sciences</i> , 2019 , 23, 3319-3334	5.5	11
278	Groundwater inflows control patterns and sources of greenhouse gas emissions from streams. <i>Limnology and Oceanography</i> , 2019 , 64, 1545-1557	4.8	37
277	Climate-phenology-hydrology interactions in northern high latitudes: Assessing the value of remote sensing data in catchment ecohydrological studies. <i>Science of the Total Environment</i> , 2019 , 656, 19-28	10.2	15
276	Global patterns and drivers of ecosystem functioning in rivers and riparian zones. <i>Science Advances</i> , 2019 , 5, eaav0486	14.3	70
275	The role of landscape properties, storage and evapotranspiration on variability in streamflow recessions in a boreal catchment. <i>Journal of Hydrology</i> , 2019 , 570, 315-328	6	20
274	Fragmentation of the Hyporheic Zone Due to Regional Groundwater Circulation. <i>Water Resources Research</i> , 2019 , 55, 1242-1262	5.4	9
273	Comparing buffer zone alternatives in forest planning using a decision support system. <i>Scandinavian Journal of Forest Research</i> , 2018 , 33, 493-501	1.7	6
272	Crowther et al. reply. <i>Nature</i> , 2018 , 554, E7-E8	50.4	11
271	Groundwater-surface water interactions across scales in a boreal landscape investigated using a numerical modelling approach. <i>Journal of Hydrology</i> , 2018 , 560, 184-201	6	17
270	Identifying and assessing the potential hydrological function of past artificial forest drainage. <i>Ambio</i> , 2018 , 47, 546-556	6.5	16
269	The Role of Spring Flood and Landscape Type in the Terrestrial Export of Polycyclic Aromatic Compounds to Streamwater. <i>Environmental Science & Environmental Science & Enviro</i>	10.3	5
268	Extreme Climate Effects on Dissolved Organic Carbon Concentrations During Snowmelt. <i>Journal of Geophysical Research G: Biogeosciences</i> , 2018 , 123, 1277-1288	3.7	11
267	Permafrost and lakes control river isotope composition across a boreal Arctic transect in the Western Siberian lowlands. <i>Environmental Research Letters</i> , 2018 , 13, 034028	6.2	23
266	Carbon dioxide and methane emissions of Swedish low-order streams national estimate and lessons learnt from more than a decade of observations. <i>Limnology and Oceanography Letters</i> , 2018 , 3, 156-167	7.9	34
265	Stable Carbon Isotopes Reveal Soil-Stream DIC Linkages in Contrasting Headwater Catchments. Journal of Geophysical Research G: Biogeosciences, 2018, 123, 149-167	3.7	33

264	Simulating streamflow in ungauged basins under a changing climate: The importance of landscape characteristics. <i>Journal of Hydrology</i> , 2018 , 561, 160-178	6	27
263	Headwater Mires Constitute a Major Source of Nitrogen (N) to Surface Waters in the Boreal Landscape. <i>Ecosystems</i> , 2018 , 21, 31-44	3.9	11
262	Towards an Improved Conceptualization of Riparian Zones in Boreal Forest Headwaters. <i>Ecosystems</i> , 2018 , 21, 297-315	3.9	46
261	Measuring and Modeling Stable Isotopes of Mobile and Bulk Soil Water. <i>Vadose Zone Journal</i> , 2018 , 17, 170149	2.7	58
260	Storage, mixing, and fluxes of water in the critical zone across northern environments inferred by stable isotopes of soil water. <i>Hydrological Processes</i> , 2018 , 32, 1720-1737	3.3	36
259	Carbon Dioxide and Methane Dynamics in a Small Boreal Lake During Winter and Spring Melt Events. <i>Journal of Geophysical Research G: Biogeosciences</i> , 2018 , 123, 2527-2540	3.7	16
258	How landscape organization and scale shape catchment hydrology and biogeochemistry: insights from a long-term catchment study. <i>Wiley Interdisciplinary Reviews: Water</i> , 2018 , 5, e1265	5.7	19
257	Thermal detection of discrete riparian inflow points (DRIPs) during contrasting hydrological events. <i>Hydrological Processes</i> , 2018 , 32, 3049-3050	3.3	14
256	Greenhouse gas emissions from boreal inland waters unchanged after forest harvesting. <i>Biogeosciences</i> , 2018 , 15, 5575-5594	4.6	9
255	Water ages in the critical zone of long-term experimental sites in northern latitudes. <i>Hydrology and Earth System Sciences</i> , 2018 , 22, 3965-3981	5.5	25
254	High riverine CO2 emissions at the permafrost boundary of Western Siberia. <i>Nature Geoscience</i> , 2018 , 11, 825-829	18.3	40
253	Dominant effect of increasing forest biomass on evapotranspiration: interpretations of movement in Budyko space. <i>Hydrology and Earth System Sciences</i> , 2018 , 22, 567-580	5.5	49
252	Quality transformation of dissolved organic carbon during water transit through lakes: contrasting controls by photochemical and biological processes. <i>Biogeosciences</i> , 2018 , 15, 457-470	4.6	13
251	Save northern high-latitude catchments. <i>Nature Geoscience</i> , 2017 , 10, 324-325	18.3	53
250	Land use influences macroinvertebrate community composition in boreal headwaters through altered stream conditions. <i>Ambio</i> , 2017 , 46, 311-323	6.5	25
249	Holocene carbon and nitrogen accumulation rates in a boreal oligotrophic fen. <i>Holocene</i> , 2017 , 27, 811	-826	9
248	The essential value of long-term experimental data for hydrology and water management. <i>Water Resources Research</i> , 2017 , 53, 2598-2604	5.4	73
247	Soil temperature responses to climate change along a gradient of uplandfiparian transect in boreal forest. <i>Climatic Change</i> , 2017 , 143, 27-41	4.5	11

(2017-2017)

246	Evaluating topography-based predictions of shallow lateral groundwater discharge zones for a boreal lake-stream system. <i>Water Resources Research</i> , 2017 , 53, 5420-5437	5.4	31	
245	GIS-based prediction of stream chemistry using landscape composition, wet areas, and hydrological flow pathways. <i>Journal of Geophysical Research G: Biogeosciences</i> , 2017 , 122, 65-79	3.7	12	
244	Inferring scale-dependent processes influencing stream water biogeochemistry from headwater to sea. <i>Limnology and Oceanography</i> , 2017 , 62, S58-S70	4.8	27	
243	Widespread Increases in Iron Concentration in European and North American Freshwaters. <i>Global Biogeochemical Cycles</i> , 2017 , 31, 1488-1500	5.9	49	
242	Elemental Composition of Natural Nanoparticles and Fine Colloids in European Forest Stream Waters and Their Role as Phosphorus Carriers. <i>Global Biogeochemical Cycles</i> , 2017 , 31, 1592-1607	5.9	33	
241	From soil water to surface water how the riparian zone controls element transport from a boreal forest to a stream. <i>Biogeosciences</i> , 2017 , 14, 3001-3014	4.6	40	
240	Atmospheric Transport and Deposition of Bromoanisoles Along a Temperate to Arctic Gradient. <i>Environmental Science & Environmental Science & Environme</i>	10.3	12	
239	Aquatic export of young dissolved and gaseous carbon from a pristine boreal fen: Implications for peat carbon stock stability. <i>Global Change Biology</i> , 2017 , 23, 5523-5536	11.4	25	
238	Modeling the isotopic evolution of snowpack and snowmelt: Testing a spatially distributed parsimonious approach. <i>Water Resources Research</i> , 2017 , 53, 5813-5830	5.4	39	
237	Seasonal resource limitation of heterotrophic biofilms in boreal streams. <i>Limnology and Oceanography</i> , 2017 , 62, 164-176	4.8	20	
236	Increasing water losses from snow captured in the canopy of boreal forests: A case study using a 30 year data set. <i>Hydrological Processes</i> , 2017 , 31, 3558-3567	3.3	11	
235	Strategies trees use to overcome seasonal water limitation in an agroforestry system in semiarid West Africa. <i>Ecohydrology</i> , 2017 , 10, e1808	2.5	16	
234	Spatial and temporal patterns of dissolved organic matter quantity and quality in the Mississippi River Basin, 1997\(\textbf{1}\)013. <i>Hydrological Processes</i> , 2017 , 31, 902-915	3.3	21	
233	Landscape control on the hydrogeochemistry of As, Co and Pb in a boreal stream network. <i>Geochimica Et Cosmochimica Acta</i> , 2017 , 211, 194-213	5.5	2	
232	Management perspectives on Aqua incognita: Connectivity and cumulative effects of small natural and artificial streams in boreal forests. <i>Hydrological Processes</i> , 2017 , 31, 4238-4244	3.3	26	
231	Mercury evasion from a boreal peatland shortens the timeline for recovery from legacy pollution. <i>Scientific Reports</i> , 2017 , 7, 16022	4.9	29	
230	Evaluating hillslope and riparian contributions to dissolved nitrogen (N) export from a boreal forest catchment. <i>Journal of Geophysical Research G: Biogeosciences</i> , 2017 , 122, 324-339	3.7	18	
229	Using isotopes to constrain water flux and age estimates in snow-influenced catchments using the STARR (Spatially distributed Tracer-Aided Rainfall R unoff) model. <i>Hydrology and Earth System</i> Sciences 2017, 21, 5089-5110	5.5	47	

228	Chlorinated pesticides and natural brominated anisoles in air at three northern Baltic stations. <i>Environmental Pollution</i> , 2017 , 225, 381-389	9.3	9
227	Experimental insights into the importance of aquatic bacterial community composition to the degradation of dissolved organic matter. <i>ISME Journal</i> , 2016 , 10, 533-45	11.9	197
226	Decoupling of carbon dioxide and dissolved organic carbon in boreal headwater streams. <i>Journal of Geophysical Research G: Biogeosciences</i> , 2016 , 121, 2630-2651	3.7	33
225	Intermediate tree cover can maximize groundwater recharge in the seasonally dry tropics. <i>Scientific Reports</i> , 2016 , 6, 21930	4.9	126
224	Current Browning of Surface Waters Will Be Further Promoted by Wetter Climate. <i>Environmental Science and Technology Letters</i> , 2016 , 3, 430-435	11	158
223	Nematode community resistant to deep soil frost in boreal forest soils. <i>Pedobiologia</i> , 2016 , 59, 243-251	1.7	8
222	Persistent Organic Pollutants in Streamwater: Influence of Hydrological Conditions and Landscape Type. <i>Environmental Science & Environmental Science </i>	10.3	16
221	Conceptualizing and communicating management effects on forest water quality. <i>Ambio</i> , 2016 , 45 Suppl 2, 188-202	6.5	21
220	Hydroclimatic influences on non-stationary transit time distributions in a boreal headwater catchment. <i>Journal of Hydrology</i> , 2016 , 543, 7-16	6	21
219	Hillslope permeability architecture controls on subsurface transit time distribution and flow paths. <i>Journal of Hydrology</i> , 2016 , 543, 17-30	6	37
218	Modeling nonlinear responses of DOC transport in boreal catchments in Sweden. <i>Water Resources Research</i> , 2016 , 52, 4970-4989	5.4	7
217	Relationships Between Plant Assemblages and Water Flow Across a Boreal Forest Landscape: A Comparison of Liverworts, Mosses, and Vascular Plants. <i>Ecosystems</i> , 2016 , 19, 170-184	3.9	22
216	Socio-ecological implications of modifying rotation lengths in forestry. <i>Ambio</i> , 2016 , 45 Suppl 2, 109-23	6.5	50
215	Nitrogen dynamics in managed boreal forests: Recent advances and future research directions. <i>Ambio</i> , 2016 , 45 Suppl 2, 175-87	6.5	49
214	Biomass offsets little or none of permafrost carbon release from soils, streams, and wildfire: an expert assessment. <i>Environmental Research Letters</i> , 2016 , 11, 034014	6.2	165
213	Replacing monocultures with mixed-species stands: Ecosystem service implications of two production forest alternatives in Sweden. <i>Ambio</i> , 2016 , 45 Suppl 2, 124-39	6.5	125
212	234 U/ 238 U in a boreal stream network [Relationship to hydrological events, groundwater and scale. <i>Chemical Geology</i> , 2016 , 420, 240-250	4.2	10
211	A method of establishing a transect for biodiversity and ecosystem function monitoring across Europe. <i>Applied Soil Ecology</i> , 2016 , 97, 3-11	5	27

(2016-2016)

210	Biogeochemical data from terrestrial and aquatic ecosystems in a periglacial catchment, West Greenland. <i>Earth System Science Data</i> , 2016 , 8, 439-459	10.5	8
209	Nitrogen export from a boreal stream network following forest harvesting: seasonal nitrate removal and conservative export of organic forms. <i>Biogeosciences</i> , 2016 , 13, 1-12	4.6	30
208	Using dry and wet year hydroclimatic extremes to guide future hydrologic projections. <i>Hydrology and Earth System Sciences</i> , 2016 , 20, 2811-2825	5.5	12
207	Data rules: from personal belonging to community goods. <i>Hydrological Processes</i> , 2016 , 30, 1978-1981	3.3	4
206	The assumption of uniform specific discharge: unsafe at any time?. <i>Hydrological Processes</i> , 2016 , 30, 39	78 ,. 398	824
205	Water use by Swedish boreal forests in a changing climate. <i>Functional Ecology</i> , 2016 , 30, 690-699	5.6	27
204	Adding snow to the picture [providing complementary winter precipitation data to the Krycklan Catchment Study database. <i>Hydrological Processes</i> , 2016 , 30, 2413-2416	3.3	38
203	Influence of soil frost on the character and degradability of dissolved organic carbon in boreal forest soils. <i>Journal of Geophysical Research G: Biogeosciences</i> , 2016 , 121, 829-840	3.7	15
202	The Importance of Eolian Input on Lake-Sediment Geochemical Composition in the Dry Proglacial Landscape of Western Greenland. <i>Arctic, Antarctic, and Alpine Research</i> , 2016 , 48, 93-109	1.8	10
201	Quantifying global soil carbon losses in response to warming. <i>Nature</i> , 2016 , 540, 104-108	50.4	560
200	Sensitivity of stream dissolved organic carbon to temperature and discharge: Implications of future climates. <i>Journal of Geophysical Research G: Biogeosciences</i> , 2016 , 121, 126-144	3.7	19
199	Long-term declines in stream and river inorganic nitrogen (N) export correspond to forest change. <i>Ecological Applications</i> , 2016 , 26, 545-56	4.9	26
198	The role of biogeochemical hotspots, landscape heterogeneity, and hydrological connectivity for minimizing forestry effects on water quality. <i>Ambio</i> , 2016 , 45 Suppl 2, 152-62	6.5	46
197	Boreal forest riparian zones regulate stream sulfate and dissolved organic carbon. <i>Science of the Total Environment</i> , 2016 , 560-561, 110-22	10.2	41
196	Landscape controls on spatiotemporal discharge variability in a boreal catchment. <i>Water Resources Research</i> , 2016 , 52, 6541-6556	5.4	46
195	Short-term climate change manipulation effects do not scale up to long-term legacies: effects of an absent snow cover on boreal forest plants. <i>Journal of Ecology</i> , 2016 , 104, 1638-1648	6	46
194	Twelvelyear interannual and seasonal variability of stream carbon export from a boreal peatland catchment. <i>Journal of Geophysical Research G: Biogeosciences</i> , 2016 , 121, 1851-1866	3.7	39
193	Cost of riparian buffer zones: A comparison of hydrologically adapted site-specific riparian buffers with traditional fixed widths. <i>Water Resources Research</i> , 2016 , 52, 1056-1069	5.4	31

192	Atmospheric pathways of chlorinated pesticides and natural bromoanisoles in the northern Baltic Sea and its catchment. <i>Ambio</i> , 2015 , 44 Suppl 3, 472-83	6.5	13
191	The river as a chemostat: fresh perspectives on dissolved organic matter flowing down the river continuum. <i>Canadian Journal of Fisheries and Aquatic Sciences</i> , 2015 , 72, 1272-1285	2.4	162
190	Sources of and processes controlling CO2 emissions change with the size of streams and rivers. <i>Nature Geoscience</i> , 2015 , 8, 696-699	18.3	302
189	Mass Balance of Perfluorinated Alkyl Acids in a Pristine Boreal Catchment. <i>Environmental Science & Environmental Science</i>	10.3	32
188	Local and regional processes determine plant species richness in a river-network metacommunity. <i>Ecology</i> , 2015 , 96, 381-91	4.6	50
187	The relative influence of land cover, hydrology, and in-stream processing on the composition of dissolved organic matter in boreal streams. <i>Journal of Geophysical Research G: Biogeosciences</i> , 2015 , 120, 1491-1505	3.7	67
186	Hydrological response to changing climate conditions: Spatial streamflow variability in the boreal region. <i>Water Resources Research</i> , 2015 , 51, 9425-9446	5.4	52
185	A preliminary assessment of water partitioning and ecohydrological coupling in northern headwaters using stable isotopes and conceptual runoff models. <i>Hydrological Processes</i> , 2015 , 29, 5153	-3473	44
184	Connecting precipitation inputs and soil flow pathways to stream water in contrasting boreal catchments. <i>Hydrological Processes</i> , 2015 , 29, 3546-3555	3.3	66
183	Comparison of threshold hydrologic response across northern catchments. <i>Hydrological Processes</i> , 2015 , 29, 3575-3591	3.3	39
182	Local- and landscape-scale impacts of clear-cuts and climate change on surface water dissolved organic carbon in boreal forests. <i>Journal of Geophysical Research G: Biogeosciences</i> , 2015 , 120, 2402-242	26 ^{.7}	18
181	Scale-dependent groundwater contributions influence patterns of winter baseflow stream chemistry in boreal catchments. <i>Journal of Geophysical Research G: Biogeosciences</i> , 2015 , 120, 847-858	3.7	53
180	Spatial Variability of Dissolved Organic and Inorganic Carbon in Subarctic Headwater Streams. <i>Arctic, Antarctic, and Alpine Research</i> , 2015 , 47, 529-546	1.8	14
179	Nitrogen limitation of heterotrophic biofilms in boreal streams. Freshwater Biology, 2015 , 60, 1237-125	13.1	20
178	Carbon dioxide transport across the hillslopeliparian tream continuum in a boreal headwater catchment. <i>Biogeosciences</i> , 2015 , 12, 1881-1892	4.6	44
177	Can Low-Resolution Airborne Laser Scanning Data Be Used to Model Stream Rating Curves?. <i>Water</i> (Switzerland), 2015 , 7, 1324-1339	3	6
176	Tracer-based assessment of flow paths, storage and runoff generation in northern catchments: a review. <i>Hydrological Processes</i> , 2015 , 29, 3475-3490	3.3	113
175	Hydrological and meteorological investigations in a periglacial lake catchment near Kangerlussuaq, west Greenland [presentation of a new multi-parameter data set. <i>Earth System Science Data</i> , 2015 , 7, 93-108	10.5	21

174	Groundwater discharge creates hotspots of riparian plant species richness in a boreal forest stream network. <i>Ecology</i> , 2014 , 95, 715-25	4.6	60
173	The effect of trees on preferential flow and soil infiltrability in an agroforestry parkland in semiarid Burkina Faso. <i>Water Resources Research</i> , 2014 , 50, 3342-3354	5.4	110
172	Analysis of hydrological seasonality across northern catchments using monthly precipitation flunoff polygon metrics. <i>Hydrological Sciences Journal</i> , 2014 , 59, 56-72	3.5	4
171	Atmospheric deposition of persistent organic pollutants and chemicals of emerging concern at two sites in northern Sweden. <i>Environmental Sciences: Processes and Impacts</i> , 2014 , 16, 298-305	4.3	34
170	Impact of forestry on total and methyl-mercury in surface waters: distinguishing effects of logging and site preparation. <i>Environmental Science & Environmental Science & Env</i>	10.3	40
169	Metal transport in the boreal landscape-the role of wetlands and the affinity for organic matter. <i>Environmental Science & Environmental Science & Env</i>	10.3	41
168	The Full Annual Carbon Balance of Boreal Forests Is Highly Sensitive to Precipitation. <i>Environmental Science and Technology Letters</i> , 2014 , 1, 315-319	11	53
167	Cross-scale ensemble projections of dissolved organic carbon dynamics in boreal forest streams. <i>Climate Dynamics</i> , 2014 , 42, 2305-2321	4.2	20
166	Patterns and drivers of riverine nitrogen (N) across alpine, subarctic, and boreal Sweden. <i>Biogeochemistry</i> , 2014 , 120, 105-120	3.8	40
165	Towards optimizing riparian buffer zones: Ecological and biogeochemical implications for forest management. <i>Forest Ecology and Management</i> , 2014 , 334, 74-84	3.9	105
164	Landscape types and pH control organic matter mediated mobilization of Al, Fe, U and La in boreal catchments. <i>Geochimica Et Cosmochimica Acta</i> , 2014 , 135, 190-202	5.5	32
163	XAS study of iron speciation in soils and waters from a boreal catchment. <i>Chemical Geology</i> , 2014 , 364, 93-102	4.2	50
162	Scaling of increased dissolved organic carbon inputs by forest clear-cutting IWhat arrives downstream?. <i>Journal of Hydrology</i> , 2014 , 508, 299-306	6	24
161	The fate of per- and polyfluoroalkyl substances within a melting snowpack of a boreal forest. <i>Environmental Pollution</i> , 2014 , 191, 190-8	9.3	23
160	Downstream changes in DOC: Inferring contributions in the face of model uncertainties. <i>Water Resources Research</i> , 2014 , 50, 514-525	5.4	40
159	Can the heterogeneity in stream dissolved organic carbon be explained by contributing landscape elements?. <i>Biogeosciences</i> , 2014 , 11, 1199-1213	4.6	39
158	Response to Comment: Terrestrial support of pelagic consumers in unproductive lakes Incertainty and potential in assessments using stable isotopes. <i>Limnology and Oceanography</i> , 2014 , 59, 1800-1803	4.8	3
157	Linking variability in soil solution dissolved organic carbon to climate, soil type, and vegetation type. <i>Global Biogeochemical Cycles</i> , 2014 , 28, 497-509	5.9	69

156	Controls Over Base Cation Concentrations in Stream and River Waters: A Long-Term Analysis on the Role of Deposition and Climate. <i>Ecosystems</i> , 2013 , 16, 707-721	3.9	16
155	Use of color maps and wavelet coherence to discern seasonal and interannual climate influences on streamflow variability in northern catchments. <i>Water Resources Research</i> , 2013 , 49, 6194-6207	5.4	50
154	Distribution and transport of radionuclides in a boreal mireassessing past, present and future accumulation of uranium, thorium and radium. <i>Journal of Environmental Radioactivity</i> , 2013 , 121, 87-97	2.4	15
153	Hydrological effects of clear-cutting in a boreal forest \(\frac{1}{2}\) nowpack dynamics, snowmelt and streamflow responses. Journal of Hydrology, 2013, 484, 105-114	6	55
152	Effect of pH and stream order on iron and arsenic speciation in boreal catchments. <i>Environmental Science & Environmental Scie</i>	10.3	93
151	Snow removal reduces annual cellulose decomposition in a riparian boreal forest. <i>Canadian Journal of Soil Science</i> , 2013 , 93, 427-433	1.4	35
150	Energy exchange and water budget partitioning in a boreal minerogenic mire. <i>Journal of Geophysical Research G: Biogeosciences</i> , 2013 , 118, 1-13	3.7	57
149	Evasion of CO2 from streams - the dominant component of the carbon export through the aquatic conduit in a boreal landscape. <i>Global Change Biology</i> , 2013 , 19, 785-97	11.4	144
148	Catchments on the cusp? Structural and functional change in northern ecohydrology. <i>Hydrological Processes</i> , 2013 , 27, 766-774	3.3	49
147	Winter climate controls soil carbon dynamics during summer in boreal forests. <i>Environmental Research Letters</i> , 2013 , 8, 024017	6.2	31
146	Drivers of increased organic carbon concentrations in stream water following forest disturbance: Separating effects of changes in flow pathways and soil warming. <i>Journal of Geophysical Research G: Biogeosciences</i> , 2013 , 118, 1814-1827	3.7	29
145	The Krycklan Catchment Study flagship infrastructure for hydrology, biogeochemistry, and climate research in the boreal landscape. <i>Water Resources Research</i> , 2013 , 49, 7154-7158	5.4	172
144	Change in winter climate will affect dissolved organic carbon and water fluxes in mid-to-high latitude catchments. <i>Hydrological Processes</i> , 2013 , 27, 700-709	3.3	32
143	Riparian zone control on base cation concentration in boreal streams. <i>Biogeosciences</i> , 2013 , 10, 3849-38	8 6 86	43
142	Long-term patterns in dissolved organic carbon, major elements and trace metals in boreal headwater catchments: trends, mechanisms and heterogeneity. <i>Biogeosciences</i> , 2013 , 10, 2315-2330	4.6	70
141	The influence of soil frost on the quality of dissolved organic carbon in a boreal forest soil: combining field and laboratory experiments. <i>Biogeochemistry</i> , 2012 , 107, 95-106	3.8	27
140	Absence of snow cover reduces understory plant cover and alters plant community composition in boreal forests. <i>Oecologia</i> , 2012 , 168, 577-87	2.9	73
139	Effects of forestry operations on dissolved organic carbon concentrations and export in boreal first-order streams. <i>Journal of Geophysical Research</i> , 2012 , 117,		79

138	Specific discharge variability in a boreal landscape. Water Resources Research, 2012, 48,	5.4	50
137	Cross-regional prediction of long-term trajectory of stream water DOC response to climate change. <i>Geophysical Research Letters</i> , 2012 , 39,	4.9	110
136	Bioavailable phosphorus in humic headwater streams in boreal Sweden. <i>Limnology and Oceanography</i> , 2012 , 57, 1161-1170	4.8	26
135	Terrestrial organic matter support of lake food webs: Evidence from lake metabolism and stable hydrogen isotopes of consumers. <i>Limnology and Oceanography</i> , 2012 , 57, 1042-1048	4.8	108
134	Landscape control of uranium and thorium in boreal streams (spatiotemporal variability and the role of wetlands. <i>Biogeosciences</i> , 2012 , 9, 4773-4785	4.6	18
133	Modelling rating curves using remotely sensed LiDAR data. <i>Hydrological Processes</i> , 2012 , 26, 1427-1434	3.3	26
132	Hydroclimatic and hydrochemical controls on Plecoptera diversity and distribution in northern freshwater ecosystems. <i>Hydrobiologia</i> , 2012 , 693, 39-53	2.4	8
131	Soil frost enhances stream dissolved organic carbon concentrations during episodic spring snow melt from boreal mires. <i>Global Change Biology</i> , 2012 , 18, 1895-1903	11.4	25
130	Uncertainty in silicate mineral weathering rate estimates: source partitioning and policy implications. <i>Environmental Research Letters</i> , 2012 , 7, 024025	6.2	33
129	Riparian zone hydrology and soil water total organic carbon (TOC): implications for spatial variability and upscaling of lateral riparian TOC exports. <i>Biogeosciences</i> , 2012 , 9, 3901-3916	4.6	109
128	Hydrological mobilization of mercury and dissolved organic carbon in a snow-dominated, forested watershed: Conceptualization and modeling. <i>Journal of Geophysical Research</i> , 2011 , 116,		32
127	Variability of groundwater levels and total organic carbon in the riparian zone of a boreal catchment. <i>Journal of Geophysical Research</i> , 2011 , 116,		35
126	Riparian soil temperature modification of the relationship between flow and dissolved organic carbon concentration in a boreal stream. <i>Water Resources Research</i> , 2011 , 47,	5.4	56
126		5.4	56 23
	carbon concentration in a boreal stream. <i>Water Resources Research</i> , 2011 , 47, Selenium dynamics in boreal streams: the role of wetlands and changing groundwater tables.		
125	carbon concentration in a boreal stream. Water Resources Research, 2011, 47, Selenium dynamics in boreal streams: the role of wetlands and changing groundwater tables. Environmental Science & Carbon Redefines the Extent of Surface Water Acidification and Helps	10.3	23
125	carbon concentration in a boreal stream. Water Resources Research, 2011, 47, Selenium dynamics in boreal streams: the role of wetlands and changing groundwater tables. Environmental Science & Dissolved Organic Carbon Redefines the Extent of Surface Water Acidification and Helps Resolve a Classic Controversy. BioScience, 2011, 61, 614-618 Carbon mineralization and pyrite oxidation in groundwater: Importance for silicate weathering in	10.3 5·7	23

120	Modeling subsurface transport in extensive glaciofluvial and littoral sediments to remediate a municipal drinking water aquifer. <i>Hydrology and Earth System Sciences</i> , 2011 , 15, 2229-2244	5.5	9
119	Consequences of More Intensive Forestry for the Sustainable Management of Forest Soils and Waters. <i>Forests</i> , 2011 , 2, 243-260	2.8	59
118	Forests, Forestry and the Water Framework Directive in Sweden: A Trans-Disciplinary Commentary. <i>Forests</i> , 2011 , 2, 261-282	2.8	15
117	Perspectives on the Potential Contribution of Swedish Forests to Renewable Energy Targets in Europe. <i>Forests</i> , 2011 , 2, 578-589	2.8	18
116	Effects of soil frost on growth, composition and respiration of the soil microbial decomposer community. <i>Soil Biology and Biochemistry</i> , 2011 , 43, 2069-2077	7.5	52
115	Atmospheric deposition, retention, and stream export of dioxins and PCBs in a pristine boreal catchment. <i>Environmental Pollution</i> , 2011 , 159, 1592-8	9.3	34
114	Patterns and Dynamics of Dissolved Organic Carbon (DOC) in Boreal Streams: The Role of Processes, Connectivity, and Scaling. <i>Ecosystems</i> , 2011 , 14, 880-893	3.9	281
113	Factors influencing the acidBase (pH) balance in the Baltic Sea: a sensitivity analysis. <i>Tellus, Series B: Chemical and Physical Meteorology</i> , 2010 , 62, 280-295	3.3	35
112	Efficient aquatic bacterial metabolism of dissolved low-molecular-weight compounds from terrestrial sources. <i>ISME Journal</i> , 2010 , 4, 408-16	11.9	132
111	Lake secondary production fueled by rapid transfer of low molecular weight organic carbon from terrestrial sources to aquatic consumers. <i>Ecology Letters</i> , 2010 , 13, 870-80	10	115
110	Bacterial utilization of imported organic material in three small nested humic lakes. <i>Verhandlungen Der Internationalen Vereinigung Fur Theoretische Und Angewandte Limnologie International Association of Theoretical and Applied Limnology</i> , 2010 , 30, 1393-1396		2
109	Regulation of stream water dissolved organic carbon (DOC) concentrations during snowmelt; the role of discharge, winter climate and memory effects. <i>Biogeosciences</i> , 2010 , 7, 2901-2913	4.6	66
108	Modeling stream dissolved organic carbon concentrations during spring flood in the boreal forest: A simple empirical approach for regional predictions. <i>Journal of Geophysical Research</i> , 2010 , 115,		15
107	Temporal and spatial variability of dissolved inorganic carbon in a boreal stream network: Concentrations and downstream fluxes. <i>Journal of Geophysical Research</i> , 2010 , 115, n/a-n/a		81
106	Dissolved Organic Carbon in Northern Catchments and Understanding Hydroclimatic Controls: Northern Watershed Ecosystem Response to Climate Change (North-Watch) Workshop II: Hydrological Regulation of Stream DOC in Northern Catchments; Vindeln, Sweden, 11115 April	1.5	
105	2010. Eos, 2010 , 91, 200-200 Cold winter soils enhance dissolved organic carbon concentrations in soil and stream water. Geophysical Research Letters, 2010 , 37,	4.9	92
104	Quantifying the drivers of the increasing colored organic matter in boreal surface waters. <i>Environmental Science & Environmental Science & Environmen</i>	10.3	82
103	Direct Impacts of Climate Change on Freshwater Ecosystems 2010 , 38-64		26

Interaction of Climate Change and Acid Deposition 2010, 152-179 102 5 Sensitivity of pH in a boreal stream network to a potential decrease in base cations caused by 101 2.4 16 forest harvest. Canadian Journal of Fisheries and Aquatic Sciences, 2010, 67, 1116-1125 Nutrient constraints on metabolism affect the temperature regulation of aquatic bacterial growth 100 42 4.4 efficiency. Microbial Ecology, 2010, 60, 894-902 Drivers and evolution of episodic acidification at the Bear Brook Watershed in Maine, USA. 99 15 3.1 Environmental Monitoring and Assessment, **2010**, 171, 59-69 Spatiotemporal patterns of drivers of episodic acidification in Swedish streams and their 98 10.2 9 relationships to hydrometeorological factors. Science of the Total Environment, 2010, 408, 4633-43 Dioxins, PCBs, and HCB in soil and peat profiles from a pristine boreal catchment. Environmental 97 9.3 22 Pollution, 2010, 158, 2518-25 Modelling the fate of hydrophobic organic contaminants in a boreal forest catchment: a cross 96 disciplinary approach to assessing diffuse pollution to surface waters. Environmental Pollution, 22 9.3 2010, 158, 2964-9 Controls on snowmelt water mean transit times in northern boreal catchments. Hydrological 95 3.3 52 Processes, 2010, 24, 1672-1684 Can the distribution of headwater stream chemistry be predicted from downstream observations?. 94 3.3 19 Hydrological Processes, 2010, 24, 2269-2276 Catchment processes and heterogeneity at multiple scalesBenchmarking observations, 93 3.3 conceptualization and prediction. Hydrological Processes, 2010, 24, 2203-2208 Inter-comparison of hydro-climatic regimes across northern catchments: synchronicity, resistance 88 92 3.3 and resilience. Hydrological Processes, 2010, 24, 3591-3602 Linking soil- and stream-water chemistry based on a Riparian Flow-Concentration Integration 91 5.5 172 Model. Hydrology and Earth System Sciences, 2009, 13, 2287-2297 Response of dissolved organic carbon following forest harvesting in a boreal forest. Ambio, 2009, 6.5 58 90 38, 381-6 Modeling spatial patterns of saturated areas: A comparison of the topographic wetness index and a 6 89 175 dynamic distributed model. Journal of Hydrology, 2009, 373, 15-23 Dynamics of stream water TOC concentrations in a boreal headwater catchment: Controlling 88 6 77 factors and implications for climate scenarios. Journal of Hydrology, 2009, 373, 44-56 How does landscape structure influence catchment transit time across different geomorphic 87 182 3.3 provinces?. Hydrological Processes, 2009, 23, 945-953 Hydrological control of organic carbon support for bacterial growth in boreal headwater streams. 86 56 4.4 Microbial Ecology, 2009, 57, 170-8 Dissolved inorganic carbon export across the soil/stream interface and its fate in a boreal 85 10.3 118 headwater stream. Environmental Science & Technology, 2009, 43, 7364-9

84	Landscape variations in stream water SO421and B4SSO4 in a boreal stream network. <i>Geochimica Et Cosmochimica Acta</i> , 2009 , 73, 4648-4660	5.5	19
83	Particulate aluminium in boreal streams: Towards a better understanding of its sources and influence on dissolved aluminium speciation. <i>Applied Geochemistry</i> , 2009 , 24, 1677-1685	3.5	10
82	Spatial and seasonal variations in stream water delta34S-dissolved organic matter in northern Sweden. <i>Environmental Science & Environmental Science &</i>	10.3	7
81	An approach for including consideration of stream water dissolved organic carbon in long term forest planning. <i>Ambio</i> , 2009 , 38, 387-93	6.5	12
80	Forest harvest increases runoff most during low flows in two boreal streams. <i>Ambio</i> , 2009 , 38, 357-63	6.5	42
79	Aging of allochthonous organic carbon regulates bacterial production in unproductive boreal lakes. <i>Limnology and Oceanography</i> , 2009 , 54, 1333-1342	4.8	59
78	Terrestrial export of highly bioavailable carbon from small boreal catchments in spring floods. <i>Freshwater Biology</i> , 2008 , 53, 964-972	3.1	64
77	Thirty-five years of synchrony in the organic matter concentrations of Swedish rivers explained by variation in flow and sulphate. <i>Global Change Biology</i> , 2008 , 14, 1191-1198	11.4	224
76	Contemporary carbon accumulation in a boreal oligotrophic minerogenic mire has significant sink after accounting for all C-fluxes. <i>Global Change Biology</i> , 2008 , 14, 2317-2332	11.4	262
75	Winter soil frost conditions in boreal forests control growing season soil CO2 concentration and its atmospheric exchange. <i>Global Change Biology</i> , 2008 , 14, 2839-2847	11.4	54
74	Diverging effects of anthropogenic acidification and natural acidity on community structure in Swedish streams. <i>Science of the Total Environment</i> , 2008 , 394, 321-30	10.2	15
73	Spatial heterogeneity of the spring flood acid pulse in a boreal stream network. <i>Science of the Total Environment</i> , 2008 , 407, 708-22	10.2	42
72	Sources of stream water sulfate during the spring snowmelt in boreal streams: Evidence from B4S isotope measurements. <i>Journal of Geophysical Research</i> , 2008 , 113, n/a-n/a		12
71	Climate's control of intra-annual and interannual variability of total organic carbon concentration and flux in two contrasting boreal landscape elements. <i>Journal of Geophysical Research</i> , 2008 , 113,		77
70	Dissolved organic carbon characteristics in boreal streams in a forest-wetland gradient during the transition between winter and summer. <i>Journal of Geophysical Research</i> , 2008 , 113,		103
69	Modeling the dissolved organic carbon output from a boreal mire using the convection-dispersion equation: Importance of representing sorption. <i>Water Resources Research</i> , 2008 , 44,	5.4	40
68	Thresholds for Survival of Brown Trout during the Spring Flood Acid Pulse in Streams High in Dissolved Organic Carbon. <i>Transactions of the American Fisheries Society</i> , 2008 , 137, 1363-1377	1.7	31
67	Hydrogeochemistry of Fe and Mn in small boreal streams: The role of seasonality, landscape type and scale. <i>Geochimica Et Cosmochimica Acta</i> , 2008 , 72, 2789-2804	5.5	80

(2007-2008)

66	Natural variability in lake pH on seasonal, interannual and decadal time scales: implications for assessment of human impact. <i>Environmental Science & Environmental Science &</i>	10.3	16
65	Nitrogen uptake by Hylocomium splendens during snowmelt in a boreal forest. <i>Ecoscience</i> , 2008 , 15, 315-319	1.1	11
64	Impact of changing DOC concentrations on the potential distribution of acid sensitive biota in a boreal stream network. <i>Hydrology and Earth System Sciences</i> , 2008 , 12, 425-435	5.5	20
63	Recovery from episodic acidification delayed by drought and high sea salt deposition. <i>Hydrology and Earth System Sciences</i> , 2008 , 12, 363-370	5.5	21
62	Long-term trends in catchment organic carbon and nitrogen exports from three acidified catchments in Nova Scotia, Canada. <i>Biogeochemistry</i> , 2008 , 87, 83-97	3.8	32
61	Aqua Incognita: the unknown headwaters. <i>Hydrological Processes</i> , 2008 , 22, 1239-1242	3.3	213
60	Catchment data for process conceptualization: simply not enough?. <i>Hydrological Processes</i> , 2008 , 22, 2057-2061	3.3	63
59	Landscape-controlled chemistry variation affects communities and ecosystem function in headwater streams. <i>Canadian Journal of Fisheries and Aquatic Sciences</i> , 2007 , 64, 1563-1572	2.4	20
58	The role of catchment scale and landscape characteristics for runoff generation of boreal streams. Journal of Hydrology, 2007 , 344, 198-209	6	181
57	Landscape regulation of bacterial growth efficiency in boreal freshwaters. <i>Global Biogeochemical Cycles</i> , 2007 , 21, n/a-n/a	5.9	107
56	Landscape-scale variability of acidity and dissolved organic carbon during spring flood in a boreal stream network. <i>Journal of Geophysical Research</i> , 2007 , 112,		125
55	Importance of seasonality and small streams for the landscape regulation of dissolved organic carbon export. <i>Journal of Geophysical Research</i> , 2007 , 112, n/a-n/a		160
54	Evolution of soil solution aluminum during transport along a forested boreal hillslope. <i>Journal of Geophysical Research</i> , 2007 , 112, n/a-n/a		34
53	Hydrologic and biotic control of nitrogen export during snowmelt: A combined conservative and reactive tracer approach. <i>Water Resources Research</i> , 2007 , 43,	5.4	61
52	Does freshwater macroinvertebrate diversity along a pH-gradient reflect adaptation to low pH?. <i>Freshwater Biology</i> , 2007 , 52, 2172-2183	3.1	47
51	A Novel Environmental Quality Criterion for Acidification in Swedish Lakes An Application of Studies on the Relationship Between Biota and Water Chemistry. <i>Water, Air and Soil Pollution</i> , 2007 , 7, 331-338		29
50	Climate change impact on snow and soil temperature in boreal Scots pine stands. <i>Climatic Change</i> , 2007 , 85, 179-193	4.5	133
49	The importance of groundwater discharge for plant species number in riparian zones. <i>Ecology</i> , 2007 , 88, 131-9	4.6	48

48	Contaminant transport in a municipal drinking water supply: a steady-state approach to estimate rate and uncertainty. <i>Ambio</i> , 2007 , 36, 512-9	6.5	2
47	A Novel Environmental Quality Criterion for Acidification in Swedish Lakes An Application of Studies on the Relationship Between Biota and Water Chemistry 2007 , 331-338		1
46	Landscape control of stream water aluminum in a boreal catchment during spring flood. <i>Environmental Science & Environmental &</i>	10.3	60
45	Flux rates of atmospheric lead pollution within soils of a small catchment in northern Sweden and their implications for future stream water quality. <i>Environmental Science & Diechnology</i> , 2006 , 40, 4639-45	10.3	62
44	Associations between water chemistry and fish community composition: a comparison between isolated and connected lakes in northern Sweden. <i>Freshwater Biology</i> , 2006 , 51, 510-522	3.1	25
43	Retrospective analyses and future predictions of snowmelt-induced acidification: example from a heavily impacted stream in the Czech Republic. <i>Environmental Science & Environmental Science & Enviro</i>	- 1 20- 2	10
42	Survival of brown trout during spring flood in DOC-rich streams in northern Sweden: the effect of present acid deposition and modelled pre-industrial water quality. <i>Environmental Pollution</i> , 2005 , 135, 121-30	9.3	26
41	Modelling variability of snow depths and soil temperatures in Scots pine stands. <i>Agricultural and Forest Meteorology</i> , 2005 , 133, 109-118	5.8	38
40	Naturally acid freshwater ecosystems are diverse and functional: evidence from boreal streams. <i>Oikos</i> , 2004 , 104, 149-155	4	84
39	Seasonal TOC export from seven boreal catchments in northern Sweden. <i>Aquatic Sciences</i> , 2004 , 66, 223	3-230	222
38	Resolving the Double Paradox of rapidly mobilized old water with highly variable responses in runoff chemistry. <i>Hydrological Processes</i> , 2004 , 18, 185-189	3.3	265
37	Climate-induced episodic acidification of streams in central ontario. <i>Environmental Science & Environmental Science & Technology</i> , 2004 , 38, 6009-15	10.3	46
36	Hydrological flow paths during snowmelt: Congruence between hydrometric measurements and oxygen 18 in meltwater, soil water, and runoff. <i>Water Resources Research</i> , 2004 , 40,	5.4	160
35	Episodic acidification in northern Sweden: a regional assessment of the anthropogenic component. <i>Journal of Hydrology</i> , 2004 , 297, 162-173	6	20
34	Is a universal model of organic acidity possible: comparison of the acid/base properties of dissolved organic carbon in the boreal and temperate zones. <i>Environmental Science & Environmental Science</i>	10.3	98
33	Long-term response in episodic acidification to declining SO₄² deposition in two streams in Nova Scotia. <i>Hydrology and Earth System Sciences</i> , 2002 , 6, 773-781	5.5	10
32	Episodic stream water pH decline during autumn storms following a summer drought in northern Sweden. <i>Hydrological Processes</i> , 2002 , 16, 1725-1733	3.3	35
31	Recovery of streams from episodic acidification in northern Sweden. <i>Environmental Science & Environmental Science & Technology</i> , 2002 , 36, 921-8	10.3	30

30	Oxygen 18 fractionation during snowmelt: Implications for spring flood hydrograph separation. <i>Water Resources Research</i> , 2002 , 38, 40-1-40-10	5.4	89
29	The rapid and extensive recovery from episodic acidification in northern Sweden due to declines in SO42Ideposition. <i>Geophysical Research Letters</i> , 2002 , 29, 35-1	4.9	27
28	Modeling preindustrial ANC and pH during the spring flood in northern Sweden. <i>Biogeochemistry</i> , 2001 , 54, 171-195	3.8	36
27	Does Acidification Policy Follow Research in Northern Sweden? The Case of Natural Acidity During the 1990's. <i>Water, Air, and Soil Pollution</i> , 2001 , 130, 1415-1420	2.6	11
26	Magic Modeling of Long-Term Lake Water and Soil Chemistry at Abborrtr⊞ket, Northern Sweden. Water, Air, and Soil Pollution, 2001 , 130, 1301-1306	2.6	4
25	Acid/base character of organic acids in a boreal stream during snowmelt. <i>Water Resources Research</i> , 2001 , 37, 1043-1056	5.4	42
24	Does Acidification Policy Follow Research in Northern Sweden? The Case of Natural Acidity During the 1990 § 2001 , 1415-1420		
23	High DON bioavailability in boreal streams during a spring flood. <i>Limnology and Oceanography</i> , 2000 , 45, 1298-1307	4.8	98
22	Estimating organic acid dissociation in natural surface waters using total alkalinity and TOC. <i>Water Research</i> , 2000 , 34, 1425-1434	12.5	37
21	Separating the natural and anthropogenic components of spring flood pH decline: A method for areas that are not chronically acidified. <i>Water Resources Research</i> , 2000 , 36, 1873-1884	5.4	52
20	Cause of pH decline in stream water during spring melt runoff in northern Sweden. <i>Canadian Journal of Fisheries and Aquatic Sciences</i> , 2000 , 57, 1888-1900	2.4	52
19	Quantifying sources of acid neutralisation capacity depression during spring flood episodes in Northern Sweden. <i>Environmental Pollution</i> , 1999 , 105, 427-435	9.3	58
18	Natural acidity or anthropogenic acidification in the spring flood of northern Sweden?. <i>Science of the Total Environment</i> , 1999 , 234, 63-73	10.2	35
17	Hydrograph separation using stable isotopes, silica and electrical conductivity: an alpine example. <i>Journal of Hydrology</i> , 1997 , 201, 82-101	6	105
16	Can the heterogeneity in stream dissolved organic carbon be explained by contributing landscape elem-	ents?	3
15	Riparian zone controls on base cation concentrations in boreal streams		1
14	Carbon dioxide transport across the hillslopefiparianEtream continuum in a boreal headwater catchmen	ıt	2
13	Nitrogen export from a boreal stream network following forest harvesting: seasonal nitrate removal and conservative export of organic forms		1

12	Carbon dynamics and changing winter conditions: a review of current understanding and future research directions	2
11	Long cold winters give higher stream water dissolved organic carbon (DOC) concentrations during snowmelt	4
10	Long term patterns in dissolved organic carbon, major elements and trace metals in boreal headwater catchments: trends, mechanisms and heterogeneity	1
9	Landscape control of uranium and thorium in boreal streams ßpatiotemporal variability and the role of wetlands	2
8	Using isotopes to constrain water flux and age estimates in snow-influenced catchments using the STARR (Spatially distributed Tracer-Aided Rainfall-Runoff) model	7
7	Water ages in the critical zone of long-term experimental sites in northern latitudes	2
6	Assessing the influence of soil freeze-thaw cycles on catchment water storage Iflux lage interactions using a tracer-aided ecohydrological model	2
5	Water balance and its intra-annual variability in a permafrost catchment: hydrological interactions between catchment, lake and talik	2
4	Runoff generation processes during the wet-up phase in a semi-arid basin in Iran	9
3	Recovery from episodic acidification delayed by drought and high sea salt deposition	2
2	Impact of changing DOC concentrations on the potential distribution of acid sensitive biota in a boreal stream network	1
1	Technical Note: Linking soil and stream-water chemistry based on a riparian flow-concentration integration model	4