# Hjalmar Laudon

#### List of Publications by Citations

Source: https://exaly.com/author-pdf/506287/hjalmar-laudon-publications-by-citations.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

335 papers 14,460 citations

62 h-index

102 g-index

386 ext. papers

16,925 ext. citations

avg, IF

6.68 L-index

| #   | Paper                                                                                                                                                                                              | IF    | Citations |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------|
| 335 | Quantifying global soil carbon losses in response to warming. <i>Nature</i> , <b>2016</b> , 540, 104-108                                                                                           | 50.4  | 560       |
| 334 | Sources of and processes controlling CO2 emissions change with the size of streams and rivers. <i>Nature Geoscience</i> , <b>2015</b> , 8, 696-699                                                 | 18.3  | 302       |
| 333 | Patterns and Dynamics of Dissolved Organic Carbon (DOC) in Boreal Streams: The Role of Processes, Connectivity, and Scaling. <i>Ecosystems</i> , <b>2011</b> , 14, 880-893                         | 3.9   | 281       |
| 332 | Resolving the Double Paradox of rapidly mobilized old water with highly variable responses in runoff chemistry. <i>Hydrological Processes</i> , <b>2004</b> , 18, 185-189                          | 3.3   | 265       |
| 331 | Contemporary carbon accumulation in a boreal oligotrophic minerogenic mire ha significant sink after accounting for all C-fluxes. <i>Global Change Biology</i> , <b>2008</b> , 14, 2317-2332       | 11.4  | 262       |
| 330 | Thirty-five years of synchrony in the organic matter concentrations of Swedish rivers explained by variation in flow and sulphate. <i>Global Change Biology</i> , <b>2008</b> , 14, 1191-1198      | 11.4  | 224       |
| 329 | Seasonal TOC export from seven boreal catchments in northern Sweden. <i>Aquatic Sciences</i> , <b>2004</b> , 66, 22                                                                                | 3-230 | 222       |
| 328 | Aqua Incognita: the unknown headwaters. <i>Hydrological Processes</i> , <b>2008</b> , 22, 1239-1242                                                                                                | 3.3   | 213       |
| 327 | Experimental insights into the importance of aquatic bacterial community composition to the degradation of dissolved organic matter. <i>ISME Journal</i> , <b>2016</b> , 10, 533-45                | 11.9  | 197       |
| 326 | How does landscape structure influence catchment transit time across different geomorphic provinces?. <i>Hydrological Processes</i> , <b>2009</b> , 23, 945-953                                    | 3.3   | 182       |
| 325 | The role of catchment scale and landscape characteristics for runoff generation of boreal streams.<br>Journal of Hydrology, <b>2007</b> , 344, 198-209                                             | 6     | 181       |
| 324 | Modeling spatial patterns of saturated areas: A comparison of the topographic wetness index and a dynamic distributed model. <i>Journal of Hydrology</i> , <b>2009</b> , 373, 15-23                | 6     | 175       |
| 323 | The Krycklan Catchment StudyA flagship infrastructure for hydrology, biogeochemistry, and climate research in the boreal landscape. <i>Water Resources Research</i> , <b>2013</b> , 49, 7154-7158  | 5.4   | 172       |
| 322 | Linking soil- and stream-water chemistry based on a Riparian Flow-Concentration Integration Model. <i>Hydrology and Earth System Sciences</i> , <b>2009</b> , 13, 2287-2297                        | 5.5   | 172       |
| 321 | Biomass offsets little or none of permafrost carbon release from soils, streams, and wildfire: an expert assessment. <i>Environmental Research Letters</i> , <b>2016</b> , 11, 034014              | 6.2   | 165       |
| 320 | A meta-analysis of the effects of nitrogen additions on base cations: Implications for plants, soils, and streams. <i>Forest Ecology and Management</i> , <b>2011</b> , 262, 95-104                | 3.9   | 163       |
| 319 | The river as a chemostat: fresh perspectives on dissolved organic matter flowing down the river continuum. <i>Canadian Journal of Fisheries and Aquatic Sciences</i> , <b>2015</b> , 72, 1272-1285 | 2.4   | 162       |

| 318 | Importance of seasonality and small streams for the landscape regulation of dissolved organic carbon export. <i>Journal of Geophysical Research</i> , <b>2007</b> , 112, n/a-n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      | 160 |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|
| 317 | Hydrological flow paths during snowmelt: Congruence between hydrometric measurements and oxygen 18 in meltwater, soil water, and runoff. <i>Water Resources Research</i> , <b>2004</b> , 40,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.4  | 160 |
| 316 | Current Browning of Surface Waters Will Be Further Promoted by Wetter Climate. <i>Environmental Science and Technology Letters</i> , <b>2016</b> , 3, 430-435                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11   | 158 |
| 315 | Evasion of CO2 from streams - the dominant component of the carbon export through the aquatic conduit in a boreal landscape. <i>Global Change Biology</i> , <b>2013</b> , 19, 785-97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11.4 | 144 |
| 314 | Climate change impact on snow and soil temperature in boreal Scots pine stands. <i>Climatic Change</i> , <b>2007</b> , 85, 179-193                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.5  | 133 |
| 313 | Efficient aquatic bacterial metabolism of dissolved low-molecular-weight compounds from terrestrial sources. <i>ISME Journal</i> , <b>2010</b> , 4, 408-16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 11.9 | 132 |
| 312 | Intermediate tree cover can maximize groundwater recharge in the seasonally dry tropics. <i>Scientific Reports</i> , <b>2016</b> , 6, 21930                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.9  | 126 |
| 311 | Replacing monocultures with mixed-species stands: Ecosystem service implications of two production forest alternatives in Sweden. <i>Ambio</i> , <b>2016</b> , 45 Suppl 2, 124-39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6.5  | 125 |
| 310 | Landscape-scale variability of acidity and dissolved organic carbon during spring flood in a boreal stream network. <i>Journal of Geophysical Research</i> , <b>2007</b> , 112,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      | 125 |
| 309 | Dissolved inorganic carbon export across the soil/stream interface and its fate in a boreal headwater stream. <i>Environmental Science &amp; Environmental S</i> | 10.3 | 118 |
| 308 | Lake secondary production fueled by rapid transfer of low molecular weight organic carbon from terrestrial sources to aquatic consumers. <i>Ecology Letters</i> , <b>2010</b> , 13, 870-80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10   | 115 |
| 307 | Tracer-based assessment of flow paths, storage and runoff generation in northern catchments: a review. <i>Hydrological Processes</i> , <b>2015</b> , 29, 3475-3490                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.3  | 113 |
| 306 | The effect of trees on preferential flow and soil infiltrability in an agroforestry parkland in semiarid Burkina Faso. <i>Water Resources Research</i> , <b>2014</b> , 50, 3342-3354                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.4  | 110 |
| 305 | Cross-regional prediction of long-term trajectory of stream water DOC response to climate change. <i>Geophysical Research Letters</i> , <b>2012</b> , 39,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.9  | 110 |
| 304 | Riparian zone hydrology and soil water total organic carbon (TOC): implications for spatial variability and upscaling of lateral riparian TOC exports. <i>Biogeosciences</i> , <b>2012</b> , 9, 3901-3916                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.6  | 109 |
| 303 | Terrestrial organic matter support of lake food webs: Evidence from lake metabolism and stable hydrogen isotopes of consumers. <i>Limnology and Oceanography</i> , <b>2012</b> , 57, 1042-1048                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.8  | 108 |
| 302 | Landscape regulation of bacterial growth efficiency in boreal freshwaters. <i>Global Biogeochemical Cycles</i> , <b>2007</b> , 21, n/a-n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.9  | 107 |
| 301 | Towards optimizing riparian buffer zones: Ecological and biogeochemical implications for forest management. <i>Forest Ecology and Management</i> , <b>2014</b> , 334, 74-84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.9  | 105 |

| 300         | Hydrograph separation using stable isotopes, silica and electrical conductivity: an alpine example. <i>Journal of Hydrology</i> , <b>1997</b> , 201, 82-101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6    | 105 |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|
| 299         | Dissolved organic carbon characteristics in boreal streams in a forest-wetland gradient during the transition between winter and summer. <i>Journal of Geophysical Research</i> , <b>2008</b> , 113,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      | 103 |
| 298         | Is a universal model of organic acidity possible: comparison of the acid/base properties of dissolved organic carbon in the boreal and temperate zones. <i>Environmental Science &amp; Environmental Science</i>                                                         | 10.3 | 98  |
| 297         | High DON bioavailability in boreal streams during a spring flood. <i>Limnology and Oceanography</i> , <b>2000</b> , 45, 1298-1307                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.8  | 98  |
| 296         | Effect of pH and stream order on iron and arsenic speciation in boreal catchments. <i>Environmental Science &amp; Environmental Scie</i>                                             | 10.3 | 93  |
| 295         | Cold winter soils enhance dissolved organic carbon concentrations in soil and stream water. <i>Geophysical Research Letters</i> , <b>2010</b> , 37,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.9  | 92  |
| 294         | Oxygen 18 fractionation during snowmelt: Implications for spring flood hydrograph separation. Water Resources Research, <b>2002</b> , 38, 40-1-40-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.4  | 89  |
| 293         | Inter-comparison of hydro-climatic regimes across northern catchments: synchronicity, resistance and resilience. <i>Hydrological Processes</i> , <b>2010</b> , 24, 3591-3602                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.3  | 88  |
| 292         | Naturally acid freshwater ecosystems are diverse and functional: evidence from boreal streams. <i>Oikos</i> , <b>2004</b> , 104, 149-155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4    | 84  |
| 291         | Quantifying the drivers of the increasing colored organic matter in boreal surface waters. <i>Environmental Science &amp; Documental Science </i> | 10.3 | 82  |
| <b>2</b> 90 | Temporal and spatial variability of dissolved inorganic carbon in a boreal stream network: Concentrations and downstream fluxes. <i>Journal of Geophysical Research</i> , <b>2010</b> , 115, n/a-n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      | 81  |
| 289         | Hydrogeochemistry of Fe and Mn in small boreal streams: The role of seasonality, landscape type and scale. <i>Geochimica Et Cosmochimica Acta</i> , <b>2008</b> , 72, 2789-2804                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.5  | 80  |
| 288         | Effects of forestry operations on dissolved organic carbon concentrations and export in boreal first-order streams. <i>Journal of Geophysical Research</i> , <b>2012</b> , 117,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      | 79  |
| 287         | Dynamics of stream water TOC concentrations in a boreal headwater catchment: Controlling factors and implications for climate scenarios. <i>Journal of Hydrology</i> , <b>2009</b> , 373, 44-56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6    | 77  |
| 286         | Climate's control of intra-annual and interannual variability of total organic carbon concentration and flux in two contrasting boreal landscape elements. <i>Journal of Geophysical Research</i> , <b>2008</b> , 113,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      | 77  |
| 285         | The essential value of long-term experimental data for hydrology and water management. <i>Water Resources Research</i> , <b>2017</b> , 53, 2598-2604                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.4  | 73  |
| 284         | Absence of snow cover reduces understory plant cover and alters plant community composition in boreal forests. <i>Oecologia</i> , <b>2012</b> , 168, 577-87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.9  | 73  |
| 283         | Long-term patterns in dissolved organic carbon, major elements and trace metals in boreal headwater catchments: trends, mechanisms and heterogeneity. <i>Biogeosciences</i> , <b>2013</b> , 10, 2315-2330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.6  | 70  |

| 282 | Global patterns and drivers of ecosystem functioning in rivers and riparian zones. <i>Science Advances</i> , <b>2019</b> , 5, eaav0486                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 14.3 | 70 |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----|
| 281 | Linking variability in soil solution dissolved organic carbon to climate, soil type, and vegetation type. <i>Global Biogeochemical Cycles</i> , <b>2014</b> , 28, 497-509                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.9  | 69 |
| 280 | Silicate mineral weathering rate estimates: Are they precise enough to be useful when predicting the recovery of nutrient pools after harvesting?. <i>Forest Ecology and Management</i> , <b>2011</b> , 261, 1-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.9  | 69 |
| 279 | The relative influence of land cover, hydrology, and in-stream processing on the composition of dissolved organic matter in boreal streams. <i>Journal of Geophysical Research G: Biogeosciences</i> , <b>2015</b> , 120, 1491-1505                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.7  | 67 |
| 278 | Connecting precipitation inputs and soil flow pathways to stream water in contrasting boreal catchments. <i>Hydrological Processes</i> , <b>2015</b> , 29, 3546-3555                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.3  | 66 |
| 277 | Regulation of stream water dissolved organic carbon (DOC) concentrations during snowmelt; the role of discharge, winter climate and memory effects. <i>Biogeosciences</i> , <b>2010</b> , 7, 2901-2913                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.6  | 66 |
| 276 | Terrestrial export of highly bioavailable carbon from small boreal catchments in spring floods. <i>Freshwater Biology</i> , <b>2008</b> , 53, 964-972                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.1  | 64 |
| 275 | Catchment data for process conceptualization: simply not enough?. <i>Hydrological Processes</i> , <b>2008</b> , 22, 2057-2061                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.3  | 63 |
| 274 | Flux rates of atmospheric lead pollution within soils of a small catchment in northern Sweden and their implications for future stream water quality. <i>Environmental Science &amp; Environmental Science &amp;</i>                                                                                             | 10.3 | 62 |
| 273 | Browning of freshwaters: Consequences to ecosystem services, underlying drivers, and potential mitigation measures. <i>Ambio</i> , <b>2020</b> , 49, 375-390                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6.5  | 62 |
| 272 | Hydrologic and biotic control of nitrogen export during snowmelt: A combined conservative and reactive tracer approach. <i>Water Resources Research</i> , <b>2007</b> , 43,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5.4  | 61 |
| 271 | Groundwater discharge creates hotspots of riparian plant species richness in a boreal forest stream network. <i>Ecology</i> , <b>2014</b> , 95, 715-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.6  | 60 |
| 270 | Landscape control of stream water aluminum in a boreal catchment during spring flood. <i>Environmental Science &amp; Environmental &amp;</i> | 10.3 | 60 |
| 269 | Consequences of More Intensive Forestry for the Sustainable Management of Forest Soils and Waters. <i>Forests</i> , <b>2011</b> , 2, 243-260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.8  | 59 |
| 268 | Aging of allochthonous organic carbon regulates bacterial production in unproductive boreal lakes. <i>Limnology and Oceanography</i> , <b>2009</b> , 54, 1333-1342                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.8  | 59 |
| 267 | Measuring and Modeling Stable Isotopes of Mobile and Bulk Soil Water. <i>Vadose Zone Journal</i> , <b>2018</b> , 17, 170149                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.7  | 58 |
| 266 | Response of dissolved organic carbon following forest harvesting in a boreal forest. <i>Ambio</i> , <b>2009</b> , 38, 381-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6.5  | 58 |
| 265 | Quantifying sources of acid neutralisation capacity depression during spring flood episodes in Northern Sweden. <i>Environmental Pollution</i> , <b>1999</b> , 105, 427-435                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9.3  | 58 |

| 264 | Energy exchange and water budget partitioning in a boreal minerogenic mire. <i>Journal of Geophysical Research G: Biogeosciences</i> , <b>2013</b> , 118, 1-13                                                 | 3.7  | 57 |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----|
| 263 | Riparian soil temperature modification of the relationship between flow and dissolved organic carbon concentration in a boreal stream. <i>Water Resources Research</i> , <b>2011</b> , 47,                     | 5.4  | 56 |
| 262 | Hydrological control of organic carbon support for bacterial growth in boreal headwater streams. <i>Microbial Ecology</i> , <b>2009</b> , 57, 170-8                                                            | 4.4  | 56 |
| 261 | Hydrological effects of clear-cutting in a boreal forest \( \bar{S}\) nowpack dynamics, snowmelt and streamflow responses. <i>Journal of Hydrology</i> , <b>2013</b> , 484, 105-114                            | 6    | 55 |
| 260 | Winter soil frost conditions in boreal forests control growing season soil CO2 concentration and its atmospheric exchange. <i>Global Change Biology</i> , <b>2008</b> , 14, 2839-2847                          | 11.4 | 54 |
| 259 | Save northern high-latitude catchments. <i>Nature Geoscience</i> , <b>2017</b> , 10, 324-325                                                                                                                   | 18.3 | 53 |
| 258 | High carbon emissions from thermokarst lakes of Western Siberia. <i>Nature Communications</i> , <b>2019</b> , 10, 1552                                                                                         | 17.4 | 53 |
| 257 | The Full Annual Carbon Balance of Boreal Forests Is Highly Sensitive to Precipitation. <i>Environmental Science and Technology Letters</i> , <b>2014</b> , 1, 315-319                                          | 11   | 53 |
| 256 | Scale-dependent groundwater contributions influence patterns of winter baseflow stream chemistry in boreal catchments. <i>Journal of Geophysical Research G: Biogeosciences</i> , <b>2015</b> , 120, 847-858   | 3.7  | 53 |
| 255 | Hydrological response to changing climate conditions: Spatial streamflow variability in the boreal region. <i>Water Resources Research</i> , <b>2015</b> , 51, 9425-9446                                       | 5.4  | 52 |
| 254 | Effects of soil frost on growth, composition and respiration of the soil microbial decomposer community. <i>Soil Biology and Biochemistry</i> , <b>2011</b> , 43, 2069-2077                                    | 7.5  | 52 |
| 253 | Controls on snowmelt water mean transit times in northern boreal catchments. <i>Hydrological Processes</i> , <b>2010</b> , 24, 1672-1684                                                                       | 3.3  | 52 |
| 252 | Separating the natural and anthropogenic components of spring flood pH decline: A method for areas that are not chronically acidified. <i>Water Resources Research</i> , <b>2000</b> , 36, 1873-1884           | 5.4  | 52 |
| 251 | Cause of pH decline in stream water during spring melt runoff in northern Sweden. <i>Canadian Journal of Fisheries and Aquatic Sciences</i> , <b>2000</b> , 57, 1888-1900                                      | 2.4  | 52 |
| 250 | Local and regional processes determine plant species richness in a river-network metacommunity. <i>Ecology</i> , <b>2015</b> , 96, 381-91                                                                      | 4.6  | 50 |
| 249 | Socio-ecological implications of modifying rotation lengths in forestry. <i>Ambio</i> , <b>2016</b> , 45 Suppl 2, 109-23                                                                                       | 6.5  | 50 |
| 248 | XAS study of iron speciation in soils and waters from a boreal catchment. <i>Chemical Geology</i> , <b>2014</b> , 364, 93-102                                                                                  | 4.2  | 50 |
| 247 | Use of color maps and wavelet coherence to discern seasonal and interannual climate influences on streamflow variability in northern catchments. <i>Water Resources Research</i> , <b>2013</b> , 49, 6194-6207 | 5.4  | 50 |

| 246 | Specific discharge variability in a boreal landscape. Water Resources Research, 2012, 48,                                                                                                                                                           | 5.4               | 50 |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----|
| 245 | Widespread Increases in Iron Concentration in European and North American Freshwaters. <i>Global Biogeochemical Cycles</i> , <b>2017</b> , 31, 1488-1500                                                                                            | 5.9               | 49 |
| 244 | Nitrogen dynamics in managed boreal forests: Recent advances and future research directions. <i>Ambio</i> , <b>2016</b> , 45 Suppl 2, 175-87                                                                                                        | 6.5               | 49 |
| 243 | Catchments on the cusp? Structural and functional change in northern ecohydrology. <i>Hydrological Processes</i> , <b>2013</b> , 27, 766-774                                                                                                        | 3.3               | 49 |
| 242 | Dominant effect of increasing forest biomass on evapotranspiration: interpretations of movement in Budyko space. <i>Hydrology and Earth System Sciences</i> , <b>2018</b> , 22, 567-580                                                             | 5.5               | 49 |
| 241 | The importance of groundwater discharge for plant species number in riparian zones. <i>Ecology</i> , <b>2007</b> , 88, 131-9                                                                                                                        | 4.6               | 48 |
| 240 | Using isotopes to constrain water flux and age estimates in snow-influenced catchments using the STARR (Spatially distributed Tracer-Aided Rainfall <b>R</b> unoff) model. <i>Hydrology and Earth System Sciences</i> , <b>2017</b> , 21, 5089-5110 | 5.5               | 47 |
| 239 | Carbon mineralization and pyrite oxidation in groundwater: Importance for silicate weathering in boreal forest soils and stream base-flow chemistry. <i>Applied Geochemistry</i> , <b>2011</b> , 26, 319-325                                        | 3.5               | 47 |
| 238 | Does freshwater macroinvertebrate diversity along a pH-gradient reflect adaptation to low pH?. <i>Freshwater Biology</i> , <b>2007</b> , 52, 2172-2183                                                                                              | 3.1               | 47 |
| 237 | Towards an Improved Conceptualization of Riparian Zones in Boreal Forest Headwaters. <i>Ecosystems</i> , <b>2018</b> , 21, 297-315                                                                                                                  | 3.9               | 46 |
| 236 | Climate-induced episodic acidification of streams in central ontario. <i>Environmental Science &amp; Environmental Science &amp; Technology</i> , <b>2004</b> , 38, 6009-15                                                                         | 10.3              | 46 |
| 235 | The role of biogeochemical hotspots, landscape heterogeneity, and hydrological connectivity for minimizing forestry effects on water quality. <i>Ambio</i> , <b>2016</b> , 45 Suppl 2, 152-62                                                       | 6.5               | 46 |
| 234 | Landscape controls on spatiotemporal discharge variability in a boreal catchment. <i>Water Resources Research</i> , <b>2016</b> , 52, 6541-6556                                                                                                     | 5.4               | 46 |
| 233 | Short-term climate change manipulation effects do not scale up to long-term legacies: effects of an absent snow cover on boreal forest plants. <i>Journal of Ecology</i> , <b>2016</b> , 104, 1638-1648                                             | 6                 | 46 |
| 232 | A preliminary assessment of water partitioning and ecohydrological coupling in northern headwaters using stable isotopes and conceptual runoff models. <i>Hydrological Processes</i> , <b>2015</b> , 29, 5153-5                                     | 3 <sup>4</sup> 73 | 44 |
| 231 | Carbon dioxide transport across the hillslopefiparianEtream continuum in a boreal headwater catchment. <i>Biogeosciences</i> , <b>2015</b> , 12, 1881-1892                                                                                          | 4.6               | 44 |
| 230 | Riparian zone control on base cation concentration in boreal streams. <i>Biogeosciences</i> , <b>2013</b> , 10, 3849-386                                                                                                                            | <b>48</b> 6       | 43 |
| 229 | Forest harvest increases runoff most during low flows in two boreal streams. <i>Ambio</i> , <b>2009</b> , 38, 357-63                                                                                                                                | 6.5               | 42 |

| 228 | Nutrient constraints on metabolism affect the temperature regulation of aquatic bacterial growth efficiency. <i>Microbial Ecology</i> , <b>2010</b> , 60, 894-902                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.4  | 42 |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----|
| 227 | Spatial heterogeneity of the spring flood acid pulse in a boreal stream network. <i>Science of the Total Environment</i> , <b>2008</b> , 407, 708-22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10.2 | 42 |
| 226 | Acid/base character of organic acids in a boreal stream during snowmelt. <i>Water Resources Research</i> , <b>2001</b> , 37, 1043-1056                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.4  | 42 |
| 225 | Metal transport in the boreal landscape-the role of wetlands and the affinity for organic matter. <i>Environmental Science &amp; Environmental Science &amp; Env</i> | 10.3 | 41 |
| 224 | Boreal forest riparian zones regulate stream sulfate and dissolved organic carbon. <i>Science of the Total Environment</i> , <b>2016</b> , 560-561, 110-22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10.2 | 41 |
| 223 | From soil water to surface water how the riparian zone controls element transport from a boreal forest to a stream. <i>Biogeosciences</i> , <b>2017</b> , 14, 3001-3014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.6  | 40 |
| 222 | Impact of forestry on total and methyl-mercury in surface waters: distinguishing effects of logging and site preparation. <i>Environmental Science &amp; Environmental Science &amp; Env</i>     | 10.3 | 40 |
| 221 | Patterns and drivers of riverine nitrogen (N) across alpine, subarctic, and boreal Sweden. <i>Biogeochemistry</i> , <b>2014</b> , 120, 105-120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.8  | 40 |
| 220 | Downstream changes in DOC: Inferring contributions in the face of model uncertainties. <i>Water Resources Research</i> , <b>2014</b> , 50, 514-525                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.4  | 40 |
| 219 | Increasing Dissolved Organic Carbon Redefines the Extent of Surface Water Acidification and Helps Resolve a Classic Controversy. <i>BioScience</i> , <b>2011</b> , 61, 614-618                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.7  | 40 |
| 218 | Modeling the dissolved organic carbon output from a boreal mire using the convection-dispersion equation: Importance of representing sorption. <i>Water Resources Research</i> , <b>2008</b> , 44,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.4  | 40 |
| 217 | High riverine CO2 emissions at the permafrost boundary of Western Siberia. <i>Nature Geoscience</i> , <b>2018</b> , 11, 825-829                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 18.3 | 40 |
| 216 | Modeling the isotopic evolution of snowpack and snowmelt: Testing a spatially distributed parsimonious approach. <i>Water Resources Research</i> , <b>2017</b> , 53, 5813-5830                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.4  | 39 |
| 215 | Comparison of threshold hydrologic response across northern catchments. <i>Hydrological Processes</i> , <b>2015</b> , 29, 3575-3591                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.3  | 39 |
| 214 | Can the heterogeneity in stream dissolved organic carbon be explained by contributing landscape elements?. <i>Biogeosciences</i> , <b>2014</b> , 11, 1199-1213                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.6  | 39 |
| 213 | Twelvelyear interannual and seasonal variability of stream carbon export from a boreal peatland catchment. <i>Journal of Geophysical Research G: Biogeosciences</i> , <b>2016</b> , 121, 1851-1866                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.7  | 39 |
| 212 | Modelling variability of snow depths and soil temperatures in Scots pine stands. <i>Agricultural and Forest Meteorology</i> , <b>2005</b> , 133, 109-118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.8  | 38 |
| 211 | Adding snow to the picture [providing complementary winter precipitation data to the Krycklan Catchment Study database. <i>Hydrological Processes</i> , <b>2016</b> , 30, 2413-2416                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.3  | 38 |

## (2016-2016)

| 210 | Hillslope permeability architecture controls on subsurface transit time distribution and flow paths.<br>Journal of Hydrology, <b>2016</b> , 543, 17-30                                                                                       | 6    | 37 |  |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----|--|
| 209 | Estimating organic acid dissociation in natural surface waters using total alkalinity and TOC. <i>Water Research</i> , <b>2000</b> , 34, 1425-1434                                                                                           | 12.5 | 37 |  |
| 208 | Groundwater inflows control patterns and sources of greenhouse gas emissions from streams. <i>Limnology and Oceanography</i> , <b>2019</b> , 64, 1545-1557                                                                                   | 4.8  | 37 |  |
| 207 | Storage, mixing, and fluxes of water in the critical zone across northern environments inferred by stable isotopes of soil water. <i>Hydrological Processes</i> , <b>2018</b> , 32, 1720-1737                                                | 3.3  | 36 |  |
| 206 | Modeling preindustrial ANC and pH during the spring flood in northern Sweden. <i>Biogeochemistry</i> , <b>2001</b> , 54, 171-195                                                                                                             | 3.8  | 36 |  |
| 205 | Snow removal reduces annual cellulose decomposition in a riparian boreal forest. <i>Canadian Journal of Soil Science</i> , <b>2013</b> , 93, 427-433                                                                                         | 1.4  | 35 |  |
| 204 | Variability of groundwater levels and total organic carbon in the riparian zone of a boreal catchment. <i>Journal of Geophysical Research</i> , <b>2011</b> , 116,                                                                           |      | 35 |  |
| 203 | Factors influencing the acidBase (pH) balance in the Baltic Sea: a sensitivity analysis. <i>Tellus, Series B: Chemical and Physical Meteorology</i> , <b>2010</b> , 62, 280-295                                                              | 3.3  | 35 |  |
| 202 | Episodic stream water pH decline during autumn storms following a summer drought in northern Sweden. <i>Hydrological Processes</i> , <b>2002</b> , 16, 1725-1733                                                                             | 3.3  | 35 |  |
| 201 | Natural acidity or anthropogenic acidification in the spring flood of northern Sweden?. <i>Science of the Total Environment</i> , <b>1999</b> , 234, 63-73                                                                                   | 10.2 | 35 |  |
| 200 | Towards ecologically functional riparian zones: A meta-analysis to develop guidelines for protecting ecosystem functions and biodiversity in agricultural landscapes. <i>Journal of Environmental Management</i> , <b>2019</b> , 249, 109391 | 7.9  | 34 |  |
| 199 | Carbon dioxide and methane emissions of Swedish low-order streams national estimate and lessons learnt from more than a decade of observations. <i>Limnology and Oceanography Letters</i> , <b>2018</b> , 3, 156-167                         | 7.9  | 34 |  |
| 198 | Atmospheric deposition of persistent organic pollutants and chemicals of emerging concern at two sites in northern Sweden. <i>Environmental Sciences: Processes and Impacts</i> , <b>2014</b> , 16, 298-305                                  | 4.3  | 34 |  |
| 197 | Atmospheric deposition, retention, and stream export of dioxins and PCBs in a pristine boreal catchment. <i>Environmental Pollution</i> , <b>2011</b> , 159, 1592-8                                                                          | 9.3  | 34 |  |
| 196 | Evolution of soil solution aluminum during transport along a forested boreal hillslope. <i>Journal of Geophysical Research</i> , <b>2007</b> , 112, n/a-n/a                                                                                  |      | 34 |  |
| 195 | Elemental Composition of Natural Nanoparticles and Fine Colloids in European Forest Stream Waters and Their Role as Phosphorus Carriers. <i>Global Biogeochemical Cycles</i> , <b>2017</b> , 31, 1592-1607                                   | 5.9  | 33 |  |
| 194 | Stable Carbon Isotopes Reveal Soil-Stream DIC Linkages in Contrasting Headwater Catchments.<br>Journal of Geophysical Research G: Biogeosciences, 2018, 123, 149-167                                                                         | 3.7  | 33 |  |
| 193 | Decoupling of carbon dioxide and dissolved organic carbon in boreal headwater streams. <i>Journal of Geophysical Research G: Biogeosciences</i> , <b>2016</b> , 121, 2630-2651                                                               | 3.7  | 33 |  |

| 192 | Uncertainty in silicate mineral weathering rate estimates: source partitioning and policy implications. <i>Environmental Research Letters</i> , <b>2012</b> , 7, 024025                                                                                   | 6.2  | 33 |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----|
| 191 | Mass Balance of Perfluorinated Alkyl Acids in a Pristine Boreal Catchment. <i>Environmental Science</i> & amp; Technology, <b>2015</b> , 49, 12127-35                                                                                                     | 10.3 | 32 |
| 190 | Landscape types and pH control organic matter mediated mobilization of Al, Fe, U and La in boreal catchments. <i>Geochimica Et Cosmochimica Acta</i> , <b>2014</b> , 135, 190-202                                                                         | 5.5  | 32 |
| 189 | Change in winter climate will affect dissolved organic carbon and water fluxes in mid-to-high latitude catchments. <i>Hydrological Processes</i> , <b>2013</b> , 27, 700-709                                                                              | 3.3  | 32 |
| 188 | Hydrological mobilization of mercury and dissolved organic carbon in a snow-dominated, forested watershed: Conceptualization and modeling. <i>Journal of Geophysical Research</i> , <b>2011</b> , 116,                                                    |      | 32 |
| 187 | Long-term trends in catchment organic carbon and nitrogen exports from three acidified catchments in Nova Scotia, Canada. <i>Biogeochemistry</i> , <b>2008</b> , 87, 83-97                                                                                | 3.8  | 32 |
| 186 | Evaluating topography-based predictions of shallow lateral groundwater discharge zones for a boreal lake-stream system. <i>Water Resources Research</i> , <b>2017</b> , 53, 5420-5437                                                                     | 5.4  | 31 |
| 185 | Winter climate controls soil carbon dynamics during summer in boreal forests. <i>Environmental Research Letters</i> , <b>2013</b> , 8, 024017                                                                                                             | 6.2  | 31 |
| 184 | Thresholds for Survival of Brown Trout during the Spring Flood Acid Pulse in Streams High in Dissolved Organic Carbon. <i>Transactions of the American Fisheries Society</i> , <b>2008</b> , 137, 1363-1377                                               | 1.7  | 31 |
| 183 | Cost of riparian buffer zones: A comparison of hydrologically adapted site-specific riparian buffers with traditional fixed widths. <i>Water Resources Research</i> , <b>2016</b> , 52, 1056-1069                                                         | 5.4  | 31 |
| 182 | Recovery of streams from episodic acidification in northern Sweden. <i>Environmental Science &amp; Environmental Science &amp; Technology</i> , <b>2002</b> , 36, 921-8                                                                                   | 10.3 | 30 |
| 181 | Nitrogen export from a boreal stream network following forest harvesting: seasonal nitrate removal and conservative export of organic forms. <i>Biogeosciences</i> , <b>2016</b> , 13, 1-12                                                               | 4.6  | 30 |
| 180 | Current forest carbon fixation fuels stream CO emissions. <i>Nature Communications</i> , <b>2019</b> , 10, 1876                                                                                                                                           | 17.4 | 29 |
| 179 | Mercury evasion from a boreal peatland shortens the timeline for recovery from legacy pollution. <i>Scientific Reports</i> , <b>2017</b> , 7, 16022                                                                                                       | 4.9  | 29 |
| 178 | Drivers of increased organic carbon concentrations in stream water following forest disturbance: Separating effects of changes in flow pathways and soil warming. <i>Journal of Geophysical Research G: Biogeosciences</i> , <b>2013</b> , 118, 1814-1827 | 3.7  | 29 |
| 177 | A Novel Environmental Quality Criterion for Acidification in Swedish Lakes An Application of Studies on the Relationship Between Biota and Water Chemistry. <i>Water, Air and Soil Pollution</i> , <b>2007</b> , 7, 331-338                               |      | 29 |
| 176 | Inferring scale-dependent processes influencing stream water biogeochemistry from headwater to sea. <i>Limnology and Oceanography</i> , <b>2017</b> , 62, S58-S70                                                                                         | 4.8  | 27 |
| 175 | Simulating streamflow in ungauged basins under a changing climate: The importance of landscape characteristics. <i>Journal of Hydrology</i> , <b>2018</b> , 561, 160-178                                                                                  | 6    | 27 |

## (2018-2016)

| - | 174 | A method of establishing a transect for biodiversity and ecosystem function monitoring across Europe. <i>Applied Soil Ecology</i> , <b>2016</b> , 97, 3-11                                                                      | 5      | 27  |  |
|---|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----|--|
|   | 173 | The influence of soil frost on the quality of dissolved organic carbon in a boreal forest soil: combining field and laboratory experiments. <i>Biogeochemistry</i> , <b>2012</b> , 107, 95-106                                  | 3.8    | 27  |  |
| - | 172 | The rapid and extensive recovery from episodic acidification in northern Sweden due to declines in SO42Ideposition. <i>Geophysical Research Letters</i> , <b>2002</b> , 29, 35-1                                                | 4.9    | 27  |  |
| - | 171 | Water use by Swedish boreal forests in a changing climate. <i>Functional Ecology</i> , <b>2016</b> , 30, 690-699                                                                                                                | 5.6    | 27  |  |
| 1 | 170 | Management perspectives on Aqua incognita: Connectivity and cumulative effects of small natural and artificial streams in boreal forests. <i>Hydrological Processes</i> , <b>2017</b> , 31, 4238-4244                           | 3.3    | 26  |  |
| - | 169 | Bioavailable phosphorus in humic headwater streams in boreal Sweden. <i>Limnology and Oceanography</i> , <b>2012</b> , 57, 1161-1170                                                                                            | 4.8    | 26  |  |
| 1 | 168 | Modelling rating curves using remotely sensed LiDAR data. <i>Hydrological Processes</i> , <b>2012</b> , 26, 1427-1434                                                                                                           | 3.3    | 26  |  |
|   | 167 | Direct Impacts of Climate Change on Freshwater Ecosystems <b>2010</b> , 38-64                                                                                                                                                   |        | 26  |  |
| - | 166 | Survival of brown trout during spring flood in DOC-rich streams in northern Sweden: the effect of present acid deposition and modelled pre-industrial water quality. <i>Environmental Pollution</i> , <b>2005</b> , 135, 121-30 | 9.3    | 26  |  |
|   | 165 | Long-term declines in stream and river inorganic nitrogen (N) export correspond to forest change. <i>Ecological Applications</i> , <b>2016</b> , 26, 545-56                                                                     | 4.9    | 26  |  |
| 5 | 164 | Land use influences macroinvertebrate community composition in boreal headwaters through altered stream conditions. <i>Ambio</i> , <b>2017</b> , 46, 311-323                                                                    | 6.5    | 25  |  |
|   | 163 | Aquatic export of young dissolved and gaseous carbon from a pristine boreal fen: Implications for peat carbon stock stability. <i>Global Change Biology</i> , <b>2017</b> , 23, 5523-5536                                       | 11.4   | 25  |  |
| - | 162 | Soil frost enhances stream dissolved organic carbon concentrations during episodic spring snow melt from boreal mires. <i>Global Change Biology</i> , <b>2012</b> , 18, 1895-1903                                               | 11.4   | 25  |  |
| - | 161 | Associations between water chemistry and fish community composition: a comparison between isolated and connected lakes in northern Sweden. <i>Freshwater Biology</i> , <b>2006</b> , 51, 510-522                                | 3.1    | 25  |  |
| - | 160 | Water ages in the critical zone of long-term experimental sites in northern latitudes. <i>Hydrology and Earth System Sciences</i> , <b>2018</b> , 22, 3965-3981                                                                 | 5.5    | 25  |  |
| - | 159 | Scaling of increased dissolved organic carbon inputs by forest clear-cutting IWhat arrives downstream?. <i>Journal of Hydrology</i> , <b>2014</b> , 508, 299-306                                                                | 6      | 24  |  |
| - | 158 | The assumption of uniform specific discharge: unsafe at any time?. <i>Hydrological Processes</i> , <b>2016</b> , 30, 397                                                                                                        | 8-3988 | 324 |  |
|   | 157 | Permafrost and lakes control river isotope composition across a boreal Arctic transect in the Western Siberian lowlands. <i>Environmental Research Letters</i> , <b>2018</b> , 13, 034028                                       | 6.2    | 23  |  |
|   |     |                                                                                                                                                                                                                                 |        |     |  |

| 156 | The fate of per- and polyfluoroalkyl substances within a melting snowpack of a boreal forest. <i>Environmental Pollution</i> , <b>2014</b> , 191, 190-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9.3  | 23 |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----|
| 155 | Selenium dynamics in boreal streams: the role of wetlands and changing groundwater tables. <i>Environmental Science &amp; Environmental Science &amp; Environmen</i> | 10.3 | 23 |
| 154 | Relationships Between Plant Assemblages and Water Flow Across a Boreal Forest Landscape: A Comparison of Liverworts, Mosses, and Vascular Plants. <i>Ecosystems</i> , <b>2016</b> , 19, 170-184                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.9  | 22 |
| 153 | Dioxins, PCBs, and HCB in soil and peat profiles from a pristine boreal catchment. <i>Environmental Pollution</i> , <b>2010</b> , 158, 2518-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9.3  | 22 |
| 152 | Modelling the fate of hydrophobic organic contaminants in a boreal forest catchment: a cross disciplinary approach to assessing diffuse pollution to surface waters. <i>Environmental Pollution</i> , <b>2010</b> , 158, 2964-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9.3  | 22 |
| 151 | Catchment processes and heterogeneity at multiple scalesBenchmarking observations, conceptualization and prediction. <i>Hydrological Processes</i> , <b>2010</b> , 24, 2203-2208                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.3  | 22 |
| 150 | Conceptualizing and communicating management effects on forest water quality. <i>Ambio</i> , <b>2016</b> , 45 Suppl 2, 188-202                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.5  | 21 |
| 149 | Hydroclimatic influences on non-stationary transit time distributions in a boreal headwater catchment. <i>Journal of Hydrology</i> , <b>2016</b> , 543, 7-16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6    | 21 |
| 148 | Spatial and temporal patterns of dissolved organic matter quantity and quality in the Mississippi River Basin, 1997\( \textbf{0} 013. \) Hydrological Processes, 2017, 31, 902-915                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.3  | 21 |
| 147 | Recovery from episodic acidification delayed by drought and high sea salt deposition. <i>Hydrology</i> and Earth System Sciences, <b>2008</b> , 12, 363-370                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.5  | 21 |
| 146 | Hydrological and meteorological investigations in a periglacial lake catchment near Kangerlussuaq, west Greenland [presentation of a new multi-parameter data set. <i>Earth System Science Data</i> , <b>2015</b> , 7, 93-108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10.5 | 21 |
| 145 | Cross-scale ensemble projections of dissolved organic carbon dynamics in boreal forest streams. <i>Climate Dynamics</i> , <b>2014</b> , 42, 2305-2321                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.2  | 20 |
| 144 | Seasonal resource limitation of heterotrophic biofilms in boreal streams. <i>Limnology and Oceanography</i> , <b>2017</b> , 62, 164-176                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.8  | 20 |
| 143 | Nitrogen limitation of heterotrophic biofilms in boreal streams. <i>Freshwater Biology</i> , <b>2015</b> , 60, 1237-125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 13.1 | 20 |
| 142 | Impact of changing DOC concentrations on the potential distribution of acid sensitive biota in a boreal stream network. <i>Hydrology and Earth System Sciences</i> , <b>2008</b> , 12, 425-435                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.5  | 20 |
| 141 | Landscape-controlled chemistry variation affects communities and ecosystem function in headwater streams. <i>Canadian Journal of Fisheries and Aquatic Sciences</i> , <b>2007</b> , 64, 1563-1572                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.4  | 20 |
| 140 | Episodic acidification in northern Sweden: a regional assessment of the anthropogenic component.<br>Journal of Hydrology, <b>2004</b> , 297, 162-173                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6    | 20 |
| 139 | The role of landscape properties, storage and evapotranspiration on variability in streamflow recessions in a boreal catchment. <i>Journal of Hydrology</i> , <b>2019</b> , 570, 315-328                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6    | 20 |

#### (2008-2009)

| 138 | Landscape variations in stream water SO42land B4SSO4 in a boreal stream network. <i>Geochimica Et Cosmochimica Acta</i> , <b>2009</b> , 73, 4648-4660                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.5             | 19 |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|----|
| 137 | Can the distribution of headwater stream chemistry be predicted from downstream observations?. <i>Hydrological Processes</i> , <b>2010</b> , 24, 2269-2276                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.3             | 19 |
| 136 | Sensitivity of stream dissolved organic carbon to temperature and discharge: Implications of future climates. <i>Journal of Geophysical Research G: Biogeosciences</i> , <b>2016</b> , 121, 126-144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.7             | 19 |
| 135 | How landscape organization and scale shape catchment hydrology and biogeochemistry: insights from a long-term catchment study. <i>Wiley Interdisciplinary Reviews: Water</i> , <b>2018</b> , 5, e1265                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.7             | 19 |
| 134 | Evaluating hillslope and riparian contributions to dissolved nitrogen (N) export from a boreal forest catchment. <i>Journal of Geophysical Research G: Biogeosciences</i> , <b>2017</b> , 122, 324-339                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.7             | 18 |
| 133 | Local- and landscape-scale impacts of clear-cuts and climate change on surface water dissolved organic carbon in boreal forests. <i>Journal of Geophysical Research G: Biogeosciences</i> , <b>2015</b> , 120, 2402-242                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ê <sup>.7</sup> | 18 |
| 132 | Landscape control of uranium and thorium in boreal streams [spatiotemporal variability and the role of wetlands. <i>Biogeosciences</i> , <b>2012</b> , 9, 4773-4785                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.6             | 18 |
| 131 | Perspectives on the Potential Contribution of Swedish Forests to Renewable Energy Targets in Europe. <i>Forests</i> , <b>2011</b> , 2, 578-589                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.8             | 18 |
| 130 | Groundwater-surface water interactions across scales in a boreal landscape investigated using a numerical modelling approach. <i>Journal of Hydrology</i> , <b>2018</b> , 560, 184-201                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6               | 17 |
| 129 | The carbon balance of a managed boreal landscape measured from a tall tower in northern Sweden. <i>Agricultural and Forest Meteorology</i> , <b>2019</b> , 274, 29-41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.8             | 16 |
| 128 | Drought alters the biogeochemistry of boreal stream networks. <i>Nature Communications</i> , <b>2020</b> , 11, 1795                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 17.4            | 16 |
| 127 | Identifying and assessing the potential hydrological function of past artificial forest drainage. <i>Ambio</i> , <b>2018</b> , 47, 546-556                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.5             | 16 |
| 126 | Persistent Organic Pollutants in Streamwater: Influence of Hydrological Conditions and Landscape Type. <i>Environmental Science &amp; Environmental Science </i> | 10.3            | 16 |
| 125 | Carbon Dioxide and Methane Dynamics in a Small Boreal Lake During Winter and Spring Melt Events. <i>Journal of Geophysical Research G: Biogeosciences</i> , <b>2018</b> , 123, 2527-2540                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.7             | 16 |
| 124 | Controls Over Base Cation Concentrations in Stream and River Waters: A Long-Term Analysis on the Role of Deposition and Climate. <i>Ecosystems</i> , <b>2013</b> , 16, 707-721                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.9             | 16 |
| 123 | Strategies trees use to overcome seasonal water limitation in an agroforestry system in semiarid West Africa. <i>Ecohydrology</i> , <b>2017</b> , 10, e1808                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.5             | 16 |
| 122 | Sensitivity of pH in a boreal stream network to a potential decrease in base cations caused by forest harvest. <i>Canadian Journal of Fisheries and Aquatic Sciences</i> , <b>2010</b> , 67, 1116-1125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.4             | 16 |
| 121 | Natural variability in lake pH on seasonal, interannual and decadal time scales: implications for assessment of human impact. <i>Environmental Science &amp; Environmental Science &amp;</i> | 10.3            | 16 |

| 120 | Distribution and transport of radionuclides in a boreal mireassessing past, present and future accumulation of uranium, thorium and radium. <i>Journal of Environmental Radioactivity</i> , <b>2013</b> , 121, 87-97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.4    | 15 |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|----|
| 119 | Forests, Forestry and the Water Framework Directive in Sweden: A Trans-Disciplinary Commentary. <i>Forests</i> , <b>2011</b> , 2, 261-282                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.8    | 15 |
| 118 | Modeling stream dissolved organic carbon concentrations during spring flood in the boreal forest: A simple empirical approach for regional predictions. <i>Journal of Geophysical Research</i> , <b>2010</b> , 115,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        | 15 |
| 117 | Drivers and evolution of episodic acidification at the Bear Brook Watershed in Maine, USA. <i>Environmental Monitoring and Assessment</i> , <b>2010</b> , 171, 59-69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.1    | 15 |
| 116 | Diverging effects of anthropogenic acidification and natural acidity on community structure in Swedish streams. <i>Science of the Total Environment</i> , <b>2008</b> , 394, 321-30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10.2   | 15 |
| 115 | Influence of soil frost on the character and degradability of dissolved organic carbon in boreal forest soils. <i>Journal of Geophysical Research G: Biogeosciences</i> , <b>2016</b> , 121, 829-840                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.7    | 15 |
| 114 | Climate-phenology-hydrology interactions in northern high latitudes: Assessing the value of remote sensing data in catchment ecohydrological studies. <i>Science of the Total Environment</i> , <b>2019</b> , 656, 19-28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10.2   | 15 |
| 113 | Spatial Variability of Dissolved Organic and Inorganic Carbon in Subarctic Headwater Streams. <i>Arctic, Antarctic, and Alpine Research</i> , <b>2015</b> , 47, 529-546                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.8    | 14 |
| 112 | The concentrations and characteristics of dissolved organic matter in high-latitude lakes determine its ambient reducing capacity. <i>Water Research</i> , <b>2020</b> , 169, 115217                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12.5   | 14 |
| 111 | The Net Landscape Carbon Balance-Integrating terrestrial and aquatic carbon fluxes in a managed boreal forest landscape in Sweden. <i>Global Change Biology</i> , <b>2020</b> , 26, 2353                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11.4   | 14 |
| 110 | Peatland drainage - a missing link behind increasing TOC concentrations in waters from high latitude forest catchments?. <i>Science of the Total Environment</i> , <b>2021</b> , 774, 145150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10.2   | 14 |
| 109 | Thermal detection of discrete riparian inflow points (DRIPs) during contrasting hydrological events. <i>Hydrological Processes</i> , <b>2018</b> , 32, 3049-3050                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.3    | 14 |
| 108 | Atmospheric pathways of chlorinated pesticides and natural bromoanisoles in the northern Baltic Sea and its catchment. <i>Ambio</i> , <b>2015</b> , 44 Suppl 3, 472-83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6.5    | 13 |
| 107 | Forest streams are important sources for nitrous oxide emissions. <i>Global Change Biology</i> , <b>2020</b> , 26, 629-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -64414 | 13 |
| 106 | Quality transformation of dissolved organic carbon during water transit through lakes: contrasting controls by photochemical and biological processes. <i>Biogeosciences</i> , <b>2018</b> , 15, 457-470                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.6    | 13 |
| 105 | GIS-based prediction of stream chemistry using landscape composition, wet areas, and hydrological flow pathways. <i>Journal of Geophysical Research G: Biogeosciences</i> , <b>2017</b> , 122, 65-79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.7    | 12 |
| 104 | Atmospheric Transport and Deposition of Bromoanisoles Along a Temperate to Arctic Gradient. <i>Environmental Science &amp; Environmental Science &amp; Environme</i> | 10.3   | 12 |
| 103 | An approach for including consideration of stream water dissolved organic carbon in long term forest planning. <i>Ambio</i> , <b>2009</b> , 38, 387-93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6.5    | 12 |

#### (2020-2008)

| 102 | Sources of stream water sulfate during the spring snowmelt in boreal streams: Evidence from B4S isotope measurements. <i>Journal of Geophysical Research</i> , <b>2008</b> , 113, n/a-n/a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       | 12 |  |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----|--|
| 101 | Using dry and wet year hydroclimatic extremes to guide future hydrologic projections. <i>Hydrology and Earth System Sciences</i> , <b>2016</b> , 20, 2811-2825                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.5   | 12 |  |
| 100 | Soil temperature responses to climate change along a gradient of uplandliparian transect in boreal forest. <i>Climatic Change</i> , <b>2017</b> , 143, 27-41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.5   | 11 |  |
| 99  | Soil frost effects on streamflow recessions in a subarctic catchment. <i>Hydrological Processes</i> , <b>2019</b> , 33, 1304-1316                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.3   | 11 |  |
| 98  | Crowther et al. reply. <i>Nature</i> , <b>2018</b> , 554, E7-E8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 50.4  | 11 |  |
| 97  | Extreme Climate Effects on Dissolved Organic Carbon Concentrations During Snowmelt. <i>Journal of Geophysical Research G: Biogeosciences</i> , <b>2018</b> , 123, 1277-1288                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.7   | 11 |  |
| 96  | Headwater Mires Constitute a Major Source of Nitrogen (N) to Surface Waters in the Boreal Landscape. <i>Ecosystems</i> , <b>2018</b> , 21, 31-44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.9   | 11 |  |
| 95  | Headwater lakes and their influence on downstream discharge. <i>Limnology and Oceanography Letters</i> , <b>2019</b> , 4, 105-112                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.9   | 11 |  |
| 94  | Assessing the influence of soil freezethaw cycles on catchment water storagethux ge interactions using a tracer-aided ecohydrological model. <i>Hydrology and Earth System Sciences</i> , <b>2019</b> , 23, 3319-3334                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.5   | 11 |  |
| 93  | Increasing water losses from snow captured in the canopy of boreal forests: A case study using a 30 year data set. <i>Hydrological Processes</i> , <b>2017</b> , 31, 3558-3567                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.3   | 11 |  |
| 92  | Nitrogen uptake by Hylocomium splendens during snowmelt in a boreal forest. <i>Ecoscience</i> , <b>2008</b> , 15, 315-319                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.1   | 11 |  |
| 91  | Does Acidification Policy Follow Research in Northern Sweden? The Case of Natural Acidity During the 1990's. <i>Water, Air, and Soil Pollution</i> , <b>2001</b> , 130, 1415-1420                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.6   | 11 |  |
| 90  | Stable isotopes of water reveal differences in plant Isoil water relationships across northern environments. <i>Hydrological Processes</i> , <b>2021</b> , 35, e14023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.3   | 11 |  |
| 89  | 234 U/ 238 U in a boreal stream network [Relationship to hydrological events, groundwater and scale. <i>Chemical Geology</i> , <b>2016</b> , 420, 240-250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.2   | 10 |  |
| 88  | Particulate aluminium in boreal streams: Towards a better understanding of its sources and influence on dissolved aluminium speciation. <i>Applied Geochemistry</i> , <b>2009</b> , 24, 1677-1685                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.5   | 10 |  |
| 87  | Retrospective analyses and future predictions of snowmelt-induced acidification: example from a heavily impacted stream in the Czech Republic. <i>Environmental Science &amp; Environmental Science &amp; Enviro</i> | 7-202 | 10 |  |
| 86  | Long-term response in episodic acidification to declining SO<sub>4</sub><sup>2</sup> deposition in two streams in Nova Scotia. <i>Hydrology and Earth System Sciences</i> , <b>2002</b> , 6, 773-781                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.5   | 10 |  |
| 85  | Policy change implications for forest water protection in Sweden over the last 50lyears. <i>Ambio</i> , <b>2020</b> , 49, 1341-1351                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6.5   | 10 |  |

| 84 | The Importance of Eolian Input on Lake-Sediment Geochemical Composition in the Dry Proglacial Landscape of Western Greenland. <i>Arctic, Antarctic, and Alpine Research</i> , <b>2016</b> , 48, 93-109            | 1.8  | 10 |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----|
| 83 | Are dissolved organic carbon concentrations in riparian groundwater linked to hydrological pathways in the boreal forest?. <i>Hydrology and Earth System Sciences</i> , <b>2020</b> , 24, 1709-1720               | 5.5  | 10 |
| 82 | Holocene carbon and nitrogen accumulation rates in a boreal oligotrophic fen. <i>Holocene</i> , <b>2017</b> , 27, 811-                                                                                            | 826  | 9  |
| 81 | Seasonal trends of legacy and alternative flame retardants in river water in a boreal catchment. <i>Science of the Total Environment</i> , <b>2019</b> , 692, 1097-1105                                           | 10.2 | 9  |
| 8o | The role of the understory in litter DOC and nutrient leaching in boreal forests. <i>Biogeochemistry</i> , <b>2020</b> , 149, 87-103                                                                              | 3.8  | 9  |
| 79 | Changing Source-Transport Dynamics Drive Differential Browning Trends in a Boreal Stream Network. <i>Water Resources Research</i> , <b>2020</b> , 56, e2019WR026336                                               | 5.4  | 9  |
| 78 | Modeling subsurface transport in extensive glaciofluvial and littoral sediments to remediate a municipal drinking water aquifer. <i>Hydrology and Earth System Sciences</i> , <b>2011</b> , 15, 2229-2244         | 5.5  | 9  |
| 77 | Spatiotemporal patterns of drivers of episodic acidification in Swedish streams and their relationships to hydrometeorological factors. <i>Science of the Total Environment</i> , <b>2010</b> , 408, 4633-43      | 10.2 | 9  |
| 76 | Runoff generation processes during the wet-up phase in a semi-arid basin in Iran                                                                                                                                  |      | 9  |
| 75 | Chlorinated pesticides and natural brominated anisoles in air at three northern Baltic stations. <i>Environmental Pollution</i> , <b>2017</b> , 225, 381-389                                                      | 9.3  | 9  |
| 74 | Fragmentation of the Hyporheic Zone Due to Regional Groundwater Circulation. <i>Water Resources Research</i> , <b>2019</b> , 55, 1242-1262                                                                        | 5.4  | 9  |
| 73 | Greenhouse gas emissions from boreal inland waters unchanged after forest harvesting.  Biogeosciences, 2018, 15, 5575-5594                                                                                        | 4.6  | 9  |
| 72 | Nematode community resistant to deep soil frost in boreal forest soils. <i>Pedobiologia</i> , <b>2016</b> , 59, 243-251                                                                                           | 1.7  | 8  |
| 71 | Hydroclimatic and hydrochemical controls on Plecoptera diversity and distribution in northern freshwater ecosystems. <i>Hydrobiologia</i> , <b>2012</b> , 693, 39-53                                              | 2.4  | 8  |
| 70 | Biogeochemical data from terrestrial and aquatic ecosystems in a periglacial catchment, West Greenland. <i>Earth System Science Data</i> , <b>2016</b> , 8, 439-459                                               | 10.5 | 8  |
| 69 | Detecting Cultural Remains in Boreal Forests in Sweden Using Airborne Laser Scanning Data of Different Resolutions. <i>Journal of Field Archaeology</i> , <b>2020</b> , 45, 16-28                                 | 2    | 8  |
| 68 | Carbon response to changing winter conditions in northern regions: current understanding and emerging research needs. <i>Environmental Reviews</i> , <b>2019</b> , 27, 545-566                                    | 4.5  | 7  |
| 67 | Partitioning growing season water balance within a forested boreal catchment using sap flux, eddy covariance, and a process-based model. <i>Hydrology and Earth System Sciences</i> , <b>2020</b> , 24, 2999-3014 | 5.5  | 7  |

## (2014-2016)

| 66 | Modeling nonlinear responses of DOC transport in boreal catchments in Sweden. <i>Water Resources Research</i> , <b>2016</b> , 52, 4970-4989                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5.4  | 7 |  |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---|--|
| 65 | Spatial and seasonal variations in stream water delta34S-dissolved organic matter in northern Sweden. <i>Environmental Science &amp; Environmental Science &amp;</i> | 10.3 | 7 |  |
| 64 | Using isotopes to constrain water flux and age estimates in snow-influenced catchments using the STARR (Spatially distributed Tracer-Aided Rainfall-Runoff) model                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      | 7 |  |
| 63 | Heterogeneous CO2 and CH4 patterns across space and time in a small boreal lake. <i>Inland Waters</i> , <b>2020</b> , 10, 348-359                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2.4  | 7 |  |
| 62 | Northern landscapes in transition: Evidence, approach and ways forward using the Krycklan Catchment Study. <i>Hydrological Processes</i> , <b>2021</b> , 35, e14170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.3  | 7 |  |
| 61 | Use of multiple LIDAR-derived digital terrain indices and machine learning for high-resolution national-scale soil moisture mapping of the Swedish forest landscape. <i>Geoderma</i> , <b>2021</b> , 404, 115280                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.7  | 7 |  |
| 60 | From ecological knowledge to conservation policy: a case study on green tree retention and continuous-cover forestry in Sweden. <i>Biodiversity and Conservation</i> , <b>2019</b> , 28, 3547-3574                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.4  | 6 |  |
| 59 | Comparing buffer zone alternatives in forest planning using a decision support system. <i>Scandinavian Journal of Forest Research</i> , <b>2018</b> , 33, 493-501                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.7  | 6 |  |
| 58 | Can Low-Resolution Airborne Laser Scanning Data Be Used to Model Stream Rating Curves?. <i>Water (Switzerland)</i> , <b>2015</b> , 7, 1324-1339                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3    | 6 |  |
| 57 | How catchment characteristics influence hydrological pathways and travel times in a boreal landscape. <i>Hydrology and Earth System Sciences</i> , <b>2021</b> , 25, 2133-2158                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.5  | 6 |  |
| 56 | The Role of Spring Flood and Landscape Type in the Terrestrial Export of Polycyclic Aromatic Compounds to Streamwater. <i>Environmental Science &amp; Environmental Science &amp; Enviro</i>     | 10.3 | 5 |  |
| 55 | Interaction of Climate Change and Acid Deposition <b>2010</b> , 152-179                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      | 5 |  |
| 54 | Trees in African drylands can promote deep soil and groundwater recharge in a future climate with more intense rainfall. <i>Land Degradation and Development</i> , <b>2020</b> , 31, 81-95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.4  | 5 |  |
| 53 | Functionally reversible impacts of disturbances on lake food webs linked to spatial and seasonal dependencies. <i>Ecology</i> , <b>2021</b> , 102, e03283                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.6  | 5 |  |
| 52 | From legacy effects of acid deposition in boreal streams to future environmental threats. <i>Environmental Research Letters</i> , <b>2021</b> , 16, 015007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6.2  | 5 |  |
| 51 | Eu anomalies in soils and soil water from a boreal hillslope transect 🖪 tracer for Holocene lanthanide transport?. <i>Geochimica Et Cosmochimica Acta</i> , <b>2019</b> , 267, 147-163                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.5  | 4 |  |
| 50 | Contrasting responses in dissolved organic carbon to extreme climate events from adjacent boreal landscapes in Northern Sweden. <i>Environmental Research Letters</i> , <b>2019</b> , 14, 084007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.2  | 4 |  |
| 49 | Analysis of hydrological seasonality across northern catchments using monthly precipitationflunoff polygon metrics. <i>Hydrological Sciences Journal</i> , <b>2014</b> , 59, 56-72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.5  | 4 |  |

| 48 | Magic Modeling of Long-Term Lake Water and Soil Chemistry at AbborrtrEket, Northern Sweden. Water, Air, and Soil Pollution, <b>2001</b> , 130, 1301-1306                                                                                                                           | 2.6           | 4 |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---|
| 47 | Long cold winters give higher stream water dissolved organic carbon (DOC) concentrations during snov                                                                                                                                                                               | vmelt         | 4 |
| 46 | Technical Note: Linking soil and stream-water chemistry based on a riparian flow-concentration integration model                                                                                                                                                                   |               | 4 |
| 45 | Impacts of litter decay on organic leachate composition and reactivity. <i>Biogeochemistry</i> , <b>2021</b> , 154, 99-1                                                                                                                                                           | <b>13.7</b> 8 | 4 |
| 44 | How tree species, tree size, and topographical location influenced tree transpiration in northern boreal forests during the historic 2018 drought. <i>Global Change Biology</i> , <b>2021</b> , 27, 3066-3078                                                                      | 11.4          | 4 |
| 43 | Data rules: from personal belonging to community goods. <i>Hydrological Processes</i> , <b>2016</b> , 30, 1978-1981                                                                                                                                                                | 3.3           | 4 |
| 42 | Discrete groundwater inflows influence patterns of nitrogen uptake in a boreal headwater stream. <i>Freshwater Science</i> , <b>2020</b> , 39, 228-240                                                                                                                             | 2             | 3 |
| 41 | Response to Comment: Terrestrial support of pelagic consumers in unproductive lakesIncertainty and potential in assessments using stable isotopes. <i>Limnology and Oceanography</i> , <b>2014</b> , 59, 1800-1803                                                                 | 4.8           | 3 |
| 40 | Can the heterogeneity in stream dissolved organic carbon be explained by contributing landscape elem                                                                                                                                                                               | ients?        | 3 |
| 39 | Contrasting storage-flux-age interactions revealed by catchment inter-comparison using a tracer-aided runoff model. <i>Journal of Hydrology</i> , <b>2020</b> , 590, 125226                                                                                                        | 6             | 3 |
| 38 | SITES AquaNet: An open infrastructure for mesocosm experiments with high frequency sensor monitoring across lakes. <i>Limnology and Oceanography: Methods</i> , <b>2021</b> , 19, 385-400                                                                                          | 2.6           | 3 |
| 37 | Lake Outflow and Hillslope Lateral Inflows Dictate Thermal Regimes of Forested Streams Draining Small Lakes. <i>Water Resources Research</i> , <b>2021</b> , 57, e2020WR028136                                                                                                     | 5.4           | 3 |
| 36 | Multiple stressors in small streams in the forestry context of Fennoscandia: The effects in time and space. <i>Science of the Total Environment</i> , <b>2021</b> , 756, 143521                                                                                                    | 10.2          | 3 |
| 35 | Integrating Discharge-Concentration Dynamics Across Carbon Forms in a Boreal Landscape. <i>Water Resources Research</i> , <b>2021</b> , 57, e2020WR028806                                                                                                                          | 5.4           | 3 |
| 34 | Current water quality guidelines across North America and Europe do not protect lakes from salinization <i>Proceedings of the National Academy of Sciences of the United States of America</i> , <b>2022</b> , 119,                                                                | 11.5          | 3 |
| 33 | Groundwater Carbon Within a Boreal Catchment: Spatiotemporal Variability of a Hidden Aquatic Carbon Pool. <i>Journal of Geophysical Research G: Biogeosciences</i> , <b>2020</b> , 125, e2019JG005244                                                                              | 3.7           | 2 |
| 32 | Landscape control on the hydrogeochemistry of As, Co and Pb in a boreal stream network. <i>Geochimica Et Cosmochimica Acta</i> , <b>2017</b> , 211, 194-213                                                                                                                        | 5.5           | 2 |
| 31 | Bacterial utilization of imported organic material in three small nested humic lakes. <i>Verhandlungen Der Internationalen Vereinigung Fur Theoretische Und Angewandte Limnologie International Association of Theoretical and Applied Limnology</i> , <b>2010</b> , 30, 1393-1396 |               | 2 |

## (2007-2007)

| 30 | Contaminant transport in a municipal drinking water supply: a steady-state approach to estimate rate and uncertainty. <i>Ambio</i> , <b>2007</b> , 36, 512-9                                         | 6.5  | 2 |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---|
| 29 | Carbon dioxide transport across the hillslopefiparianEtream continuum in a boreal headwater catchme                                                                                                  | nt   | 2 |
| 28 | Carbon dynamics and changing winter conditions: a review of current understanding and future research directions                                                                                     |      | 2 |
| 27 | Landscape control of uranium and thorium in boreal streams Bapatiotemporal variability and the role of wetlands                                                                                      |      | 2 |
| 26 | Water ages in the critical zone of long-term experimental sites in northern latitudes                                                                                                                |      | 2 |
| 25 | Assessing the influence of soil freeze-thaw cycles on catchment water storage Iflux lage interactions using a tracer-aided ecohydrological model                                                     |      | 2 |
| 24 | Water balance and its intra-annual variability in a permafrost catchment: hydrological interactions between catchment, lake and talik                                                                |      | 2 |
| 23 | Recovery from episodic acidification delayed by drought and high sea salt deposition                                                                                                                 |      | 2 |
| 22 | Assessment of a portable UV-Vis spectrophotometer's performance for stream water DOC and Fe content monitoring in remote areas. <i>Talanta</i> , <b>2021</b> , 224, 121919                           | 6.2  | 2 |
| 21 | Moving towards multi-layered, mixed-species forests in riparian buffers will enhance their long-term function in boreal landscapes. <i>Forest Ecology and Management</i> , <b>2021</b> , 493, 119254 | 3.9  | 2 |
| 20 | From Haymaking to Wood Production: Past Use of Mires in Northern Sweden Affect Current Ecosystem Services and Function. <i>Rural Landscapes</i> , <b>2021</b> , 8,                                   | 1.8  | 2 |
| 19 | Riparian zone controls on base cation concentrations in boreal streams                                                                                                                               |      | 1 |
| 18 | Nitrogen export from a boreal stream network following forest harvesting: seasonal nitrate removal and conservative export of organic forms                                                          |      | 1 |
| 17 | Long term patterns in dissolved organic carbon, major elements and trace metals in boreal headwater catchments: trends, mechanisms and heterogeneity                                                 |      | 1 |
| 16 | Impact of changing DOC concentrations on the potential distribution of acid sensitive biota in a boreal stream network                                                                               |      | 1 |
| 15 | Assessment of a portable UV-Vis spectrophotometer's performance in remote areas: Stream water DOC, Fe content and spectral data. <i>Data in Brief</i> , <b>2021</b> , 35, 106747                     | 1.2  | 1 |
| 14 | Hydrological control of water quality - Modelling base cation weathering and dynamics across heterogeneous boreal catchments. <i>Science of the Total Environment</i> , <b>2021</b> , 799, 149101    | 10.2 | 1 |
| 13 | A Novel Environmental Quality Criterion for Acidification in Swedish LakesAn Application of Studies on the Relationship Between Biota and Water Chemistry <b>2007</b> , 331-338                      |      | 1 |

| 12 | Global Patterns and Controls of Nutrient Immobilization on Decomposing Cellulose in Riverine Ecosystems. <i>Global Biogeochemical Cycles</i> , <b>2022</b> , 36,                                                                                                             | 5.9  | 1 |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---|
| 11 | Use of stable Mg isotope ratios in identifying the base cation sources of stream water in the boreal Krycklan catchment (Sweden). <i>Chemical Geology</i> , <b>2022</b> , 588, 120651                                                                                        | 4.2  | O |
| 10 | Reconciling the Carbon Balance of Northern Sweden Through Integration of Observations and Modelling. <i>Journal of Geophysical Research D: Atmospheres</i> , <b>2021</b> , 126, e2021JD035185                                                                                | 4.4  | O |
| 9  | A carbon mass-balance budget for a periglacial catchment in West Greenland - Linking the terrestrial and aquatic systems. <i>Science of the Total Environment</i> , <b>2020</b> , 711, 134561                                                                                | 10.2 | O |
| 8  | Where and When to Collect Tracer Data to Diagnose Hillslope Permeability Architecture. <i>Water Resources Research</i> , <b>2021</b> , 57, e2020WR028719                                                                                                                     | 5.4  | O |
| 7  | Preface: Linking landscape organisation and hydrological functioning: from hypotheses and observations to concepts, models and understanding. <i>Hydrology and Earth System Sciences</i> , <b>2021</b> , 25, 5277-5285                                                       | 5.5  | О |
| 6  | Overstory dynamics regulate the spatial variability in forest-floor CO2 fluxes across a managed boreal forest landscape. <i>Agricultural and Forest Meteorology</i> , <b>2022</b> , 318, 108916                                                                              | 5.8  | O |
| 5  | Expert assessment of landscape-level conservation strategies in boreal forests for biodiversity, recreation and water quality. <i>Journal for Nature Conservation</i> , <b>2022</b> , 67, 126180                                                                             | 2.3  | О |
| 4  | Dissolved Organic Carbon in Northern Catchments and Understanding Hydroclimatic Controls:<br>Northern Watershed Ecosystem Response to Climate Change (North-Watch) Workshop II:<br>Hydrological Regulation of Stream DOC in Northern Catchments; Vindeln, Sweden, 11¶5 April | 1.5  |   |
| 3  | 2010. <i>Eos</i> , <b>2010</b> , 91, 200-200  Does Acidification Policy Follow Research in Northern Sweden? The Case of Natural Acidity During the 1990日 <b>2001</b> , 1415-1420                                                                                             |      |   |
| 2  | The undetected loss of aged carbon from boreal mineral soils. Scientific Reports, 2021, 11, 6202                                                                                                                                                                             | 4.9  |   |
| 1  | Isotopic Branchpoints: Linkages and Efficiencies in Carbon and Water Budgets. <i>Journal of Geophysical Research G: Biogeosciences</i> , <b>2021</b> , 126, e2020JG006043                                                                                                    | 3.7  |   |