List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/506274/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Oriented attachment and mesocrystals: Non-classical crystallization mechanisms based on nanoparticle assembly. Physical Chemistry Chemical Physics, 2006, 8, 3271-3287.                                                                                           | 1.3  | 1,023     |
| 2  | Microwave chemistry for inorganic nanomaterials synthesis. Nanoscale, 2010, 2, 1358.                                                                                                                                                                              | 2.8  | 985       |
| 3  | Nonaqueous Sol–Gel Routes to Metal Oxide Nanoparticles. Accounts of Chemical Research, 2007, 40,<br>793-800.                                                                                                                                                      | 7.6  | 646       |
| 4  | Organic Reaction Pathways in the Nonaqueous Synthesis of Metal Oxide Nanoparticles. Chemistry - A<br>European Journal, 2006, 12, 7282-7302.                                                                                                                       | 1.7  | 439       |
| 5  | Surfactantâ€Free Nonaqueous Synthesis of Metal Oxide Nanostructures. Angewandte Chemie -<br>International Edition, 2008, 47, 5292-5304.                                                                                                                           | 7.2  | 437       |
| 6  | Morphology and Topochemical Reactions of Novel Vanadium Oxide Nanotubes. Journal of the<br>American Chemical Society, 1999, 121, 8324-8331.                                                                                                                       | 6.6  | 432       |
| 7  | Benzyl Alcohol and Titanium TetrachlorideA Versatile Reaction System for the Nonaqueous and<br>Low-Temperature Preparation of Crystalline and Luminescent Titania Nanoparticles. Chemistry of<br>Materials, 2002, 14, 4364-4370.                                  | 3.2  | 396       |
| 8  | Organic Cathode for Aqueous Zn-Ion Batteries: Taming a Unique Phase Evolution toward Stable<br>Electrochemical Cycling. Chemistry of Materials, 2018, 30, 3874-3881.                                                                                              | 3.2  | 373       |
| 9  | Magnetite Nanocrystals: Nonaqueous Synthesis, Characterization, and Solubilityâ€. Chemistry of<br>Materials, 2005, 17, 3044-3049.                                                                                                                                 | 3.2  | 341       |
| 10 | Benzyl Alcohol and Transition Metal Chlorides as a Versatile Reaction System for the Nonaqueous<br>and Low-Temperature Synthesis of Crystalline Nano-Objects with Controlled Dimensionality. Journal<br>of the American Chemical Society, 2002, 124, 13642-13643. | 6.6  | 336       |
| 11 | Template-Free Synthesis and Assembly of Single-Crystalline Tungsten Oxide Nanowires and their<br>Gas-Sensing Properties. Angewandte Chemie - International Edition, 2006, 45, 261-265.                                                                            | 7.2  | 325       |
| 12 | Nonaqueous Synthesis of Nanocrystalline Semiconducting Metal Oxides for Gas Sensing. Angewandte<br>Chemie - International Edition, 2004, 43, 4345-4349.                                                                                                           | 7.2  | 313       |
| 13 | The fascinating world of nanoparticle research. Materials Today, 2013, 16, 262-271.                                                                                                                                                                               | 8.3  | 302       |
| 14 | One-minute synthesis of crystalline binary and ternary metal oxide nanoparticles. Chemical<br>Communications, 2008, , 886-888.                                                                                                                                    | 2.2  | 295       |
| 15 | A General Soft-Chemistry Route to Perovskites and Related Materials: Synthesis of BaTiO3, BaZrO3, and<br>LiNbO3 Nanoparticles. Angewandte Chemie - International Edition, 2004, 43, 2270-2273.                                                                    | 7.2  | 270       |
| 16 | Nonaqueous and Halide-Free Route to Crystalline BaTiO3, SrTiO3, and (Ba,Sr)TiO3Nanoparticles via a<br>Mechanism Involving Câ^'C Bond Formation. Journal of the American Chemical Society, 2004, 126,<br>9120-9126.                                                | 6.6  | 265       |
| 17 | Non-aqueous Synthesis of Tin Oxide Nanocrystals and Their Assembly into Ordered Porous<br>Mesostructures. Advanced Materials, 2005, 17, 2509-2512.                                                                                                                | 11.1 | 264       |
| 18 | Ligand-Directed Assembly of Preformed Titania Nanocrystals into Highly Anisotropic Nanostructures.<br>Advanced Materials, 2004, 16, 436-439.                                                                                                                      | 11.1 | 255       |

| #  | Article                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Vanadium Oxide Nanotubes—A New Flexible Vanadate Nanophase. Advanced Materials, 2000, 12, 231-234.                                                                                                                                | 11.1 | 251       |
| 20 | Low-Cost Synthesis of Vanadium Oxide Nanotubes via Two Novel Non-Alkoxide Routes. Chemistry of<br>Materials, 2000, 12, 1995-2000.                                                                                                 | 3.2  | 240       |
| 21 | Tailoring the Surface and Solubility Properties of Nanocrystalline Titania by a Nonaqueous In Situ<br>Functionalization Process. Chemistry of Materials, 2004, 16, 1202-1208.                                                     | 3.2  | 223       |
| 22 | Growth and Assembly of Crystalline Tungsten Oxide Nanostructures Assisted by Bioligation. Journal of the American Chemical Society, 2005, 127, 15595-15601.                                                                       | 6.6  | 213       |
| 23 | Metal Oxide Nanoparticles in Organic Solvents. Engineering Materials and Processes, 2009, , .                                                                                                                                     | 0.2  | 212       |
| 24 | A General Nonaqueous Route to Binary Metal Oxide Nanocrystals Involving a Câ^'C Bond Cleavage.<br>Journal of the American Chemical Society, 2005, 127, 5608-5612.                                                                 | 6.6  | 209       |
| 25 | Kinetic and Thermodynamic Aspects in the Microwave-Assisted Synthesis of ZnO Nanoparticles in<br>Benzyl Alcohol. ACS Nano, 2009, 3, 467-477.                                                                                      | 7.3  | 206       |
| 26 | Largeâ€Scale Synthesis of Organophilic Zirconia Nanoparticles and their Application in<br>Organic–Inorganic Nanocomposites for Efficient Volume Holography. Small, 2007, 3, 1626-1632.                                            | 5.2  | 175       |
| 27 | Zinc oxide nanoparticles: chemical mechanisms and classical and non-classical crystallization.<br>Dalton Transactions, 2013, 42, 12554.                                                                                           | 1.6  | 167       |
| 28 | Non-Aqueous Synthesis of High-Purity Metal Oxide Nanopowders Using an Ether Elimination Process.<br>Advanced Materials, 2004, 16, 2196-2200.                                                                                      | 11.1 | 157       |
| 29 | Nonaqueous Synthesis of Uniform Indium Tin Oxide Nanocrystals and Their Electrical Conductivity in<br>Dependence of the Tin Oxide Concentration. Chemistry of Materials, 2006, 18, 2848-2854.                                     | 3.2  | 157       |
| 30 | What do you do, titanium? Insight into the role of titanium oxide as a water oxidation promoter in hematite-based photoanodes. Energy and Environmental Science, 2015, 8, 3242-3254.                                              | 15.6 | 147       |
| 31 | Highly Conducting Nanosized Monodispersed Antimony-Doped Tin Oxide Particles Synthesized via<br>Nonaqueous Solâ~Gel Procedure. Chemistry of Materials, 2009, 21, 5229-5236.                                                       | 3.2  | 143       |
| 32 | Non-aqueous routes to crystalline metal oxide nanoparticles: Formation mechanisms and applications. Progress in Solid State Chemistry, 2005, 33, 59-70.                                                                           | 3.9  | 140       |
| 33 | Nonaqueous synthesis of metal oxide nanoparticles:Review and indium oxide as case study for the<br>dependence of particle morphology on precursors and solvents. Journal of Sol-Gel Science and<br>Technology, 2006, 40, 259-266. | 1.1  | 136       |
| 34 | Nonaqueous and Surfactant-Free Synthesis Routes to Metal Oxide Nanoparticles. Journal of the<br>American Ceramic Society, 2006, 89, 1801-1808.                                                                                    | 1.9  | 134       |
| 35 | Ligand Functionality as a Versatile Tool to Control the Assembly Behavior of Preformed Titania<br>Nanocrystals. Chemistry - A European Journal, 2005, 11, 3541-3551.                                                              | 1.7  | 133       |
| 36 | Steam reforming of methanol over Cu/ZrO/CeO catalysts: a kinetic study. Journal of Catalysis, 2005, 230, 464-475.                                                                                                                 | 3.1  | 131       |

| #  | Article                                                                                                                                                                                                                    | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Nano-Sized Structurally Disordered Metal Oxide Composite Aerogels as High-Power Anodes in Hybrid<br>Supercapacitors. ACS Nano, 2018, 12, 2753-2763.                                                                        | 7.3  | 129       |
| 38 | Co-Doped ZnO nanoparticles: Minireview. Nanoscale, 2010, 2, 1096.                                                                                                                                                          | 2.8  | 124       |
| 39 | Nonaqueous Sol–Gel Synthesis of a Nanocrystalline InNbO <sub>4</sub> Visibleâ€Light Photocatalyst.<br>Advanced Materials, 2007, 19, 2083-2086.                                                                             | 11.1 | 123       |
| 40 | Nonaqueous Synthesis of Manganese Oxide Nanoparticles, Structural Characterization, and Magnetic<br>Properties. Journal of Physical Chemistry C, 2007, 111, 3614-3623.                                                     | 1.5  | 120       |
| 41 | Synthesis and Characterization of Stable and Crystalline Ce1-xZrxO2 Nanoparticle Sols. Chemistry of Materials, 2004, 16, 2599-2604.                                                                                        | 3.2  | 119       |
| 42 | Organic chemistry in inorganic nanomaterials synthesis. Journal of Materials Chemistry, 2008, 18,<br>1171-1182.                                                                                                            | 6.7  | 119       |
| 43 | Synthesis of Yttria-Based Crystalline and Lamellar Nanostructures and their Formation Mechanism.<br>Small, 2004, 1, 112-121.                                                                                               | 5.2  | 118       |
| 44 | A General Method of Fabricating Flexible Spinel-Type Oxide/Reduced Graphene Oxide Nanocomposite<br>Aerogels as Advanced Anodes for Lithium-Ion Batteries. ACS Nano, 2015, 9, 4227-4235.                                    | 7.3  | 118       |
| 45 | Dispersion Behavior of Zirconia Nanocrystals and Their Surface Functionalization with Vinyl<br>Group-Containing Ligands. Langmuir, 2007, 23, 9178-9187.                                                                    | 1.6  | 117       |
| 46 | Probing Solvent–Ligand Interactions in Colloidal Nanocrystals by the NMR Line Broadening.<br>Chemistry of Materials, 2018, 30, 5485-5492.                                                                                  | 3.2  | 117       |
| 47 | Thermal Transformation of Metal Oxide Nanoparticles into Nanocrystalline Metal Nitrides Using<br>Cyanamide and Urea as Nitrogen Source. Chemistry of Materials, 2007, 19, 3499-3505.                                       | 3.2  | 115       |
| 48 | Synthesis of aerogels: from molecular routes to 3-dimensional nanoparticle assembly. Nanoscale<br>Horizons, 2017, 2, 6-30.                                                                                                 | 4.1  | 113       |
| 49 | From colloidal dispersions to aerogels: How to master nanoparticle gelation. Nano Today, 2020, 30, 100827.                                                                                                                 | 6.2  | 113       |
| 50 | Diluted magnetic semiconductors: Mn/Co-doped ZnO nanorods as case study. Journal of Materials<br>Chemistry, 2008, 18, 5208.                                                                                                | 6.7  | 112       |
| 51 | 25th Anniversary Article: Metal Oxide Particles in Materials Science: Addressing All Length Scales.<br>Advanced Materials, 2014, 26, 235-257.                                                                              | 11.1 | 112       |
| 52 | Microwave-Assisted Nonaqueous Solâ^'Gel Chemistry for Highly Concentrated ZnO-Based Magnetic<br>Semiconductor Nanocrystals. Journal of Physical Chemistry C, 2011, 115, 1484-1495.                                         | 1.5  | 111       |
| 53 | Nonaqueous TiO <sub>2</sub> Nanoparticle Synthesis: a Versatile Basis for the Fabrication of Self-Supporting, Transparent, and UV-Absorbing Composite Films. ACS Applied Materials & Samp; Interfaces, 2009, 1, 1097-1104. | 4.0  | 109       |
| 54 | Largeâ€Area Alignment of Tungsten Oxide Nanowires over Flat and Patterned Substrates for<br>Roomâ€Temperature Gas Sensing. Angewandte Chemie - International Edition, 2015, 54, 340-344.                                   | 7.2  | 105       |

MARKUS NIEDERBERGER

| #  | Article                                                                                                                                                                                                                                   | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | Synthesis and characterization of novel nanoscopic molybdenum oxide fibers. Journal of Materials<br>Chemistry, 2001, 11, 1941-1945.                                                                                                       | 6.7  | 102       |
| 56 | Fully Integrated Design of a Stretchable Solidâ€&tate Lithiumâ€Ion Full Battery. Advanced Materials, 2019,<br>31, e1904648.                                                                                                               | 11.1 | 102       |
| 57 | In situ investigations of structure–activity relationships of a Cu/ZrO2 catalyst for the steam reforming of methanol. Journal of Catalysis, 2005, 233, 297-307.                                                                           | 3.1  | 98        |
| 58 | Atomic-Scale Structure of Nanocrystalline BaxSr1-xTiO3(x= 1, 0.5, 0) by X-ray Diffraction and the Atomic Pair Distribution Function Technique. Chemistry of Materials, 2006, 18, 814-821.                                                 | 3.2  | 96        |
| 59 | Probing Local Dipoles and Ligand Structure in BaTiO <sub>3</sub> Nanoparticles. Chemistry of Materials, 2010, 22, 4386-4391.                                                                                                              | 3.2  | 96        |
| 60 | Controlled Assembly of Preformed Ceria Nanocrystals into Highly Ordered 3D Nanostructures. Small, 2005, 1, 313-316.                                                                                                                       | 5.2  | 95        |
| 61 | Nonaqueous synthesis of metal oxide nanoparticles: Short review and doped titanium dioxide as case<br>study for the preparation of transition metal-doped oxide nanoparticles. Journal of Solid State<br>Chemistry, 2008, 181, 1571-1581. | 1.4  | 94        |
| 62 | A Highly Sensitive and Fast-Responding Ethanol Sensor Based on CdIn <sub>2</sub> O <sub>4</sub><br>Nanocrystals Synthesized by a Nonaqueous Solâ^'Gel Route. Chemistry of Materials, 2008, 20, 5781-5786.                                 | 3.2  | 93        |
| 63 | Facile synthesis of monodisperse Co <sub>3</sub> O <sub>4</sub> quantum dots with efficient oxygen evolution activity. Chemical Communications, 2015, 51, 1338-1340.                                                                      | 2.2  | 93        |
| 64 | Mechanistic Aspects in the Formation, Growth and Surface Functionalization of Metal Oxide<br>Nanoparticles in Organic Solvents. Chemistry - A European Journal, 2017, 23, 8542-8570.                                                      | 1.7  | 90        |
| 65 | In2O3 and Pt-In2O3 nanopowders for low temperature oxygen sensors. Sensors and Actuators B:<br>Chemical, 2007, 127, 455-462.                                                                                                              | 4.0  | 89        |
| 66 | An Iron Polyolate Complex as a Precursor for the Controlled Synthesis of Monodispersed Iron Oxide<br>Colloids. Chemistry of Materials, 2002, 14, 78-82.                                                                                   | 3.2  | 88        |
| 67 | Neodymium Dioxide Carbonate as a Sensing Layer for Chemoresistive CO <sub>2</sub> Sensing.<br>Chemistry of Materials, 2009, 21, 5375-5381.                                                                                                | 3.2  | 88        |
| 68 | Interplay Between Size and Crystal Structure of Molybdenum Dioxide Nanoparticles—Synthesis,<br>Growth Mechanism, and Electrochemical Performance. Small, 2011, 7, 377-387.                                                                | 5.2  | 85        |
| 69 | When Nanoparticles Meet Poly(Ionic Liquid)s: Chemoresistive CO <sub>2</sub> Sensing at Room<br>Temperature. Advanced Functional Materials, 2015, 25, 2537-2542.                                                                           | 7.8  | 85        |
| 70 | Multifunctional Role of Rare Earth Doping in Optical Materials: Nonaqueous Sol–Gel Synthesis of<br>Stabilized Cubic HfO <sub>2</sub> Luminescent Nanoparticles. ACS Nano, 2013, 7, 7041-7052.                                             | 7.3  | 84        |
| 71 | Three-Dimensional Assembly of Yttrium Oxide Nanosheets into Luminescent Aerogel Monoliths with Outstanding Adsorption Properties. ACS Nano, 2016, 10, 2467-2475.                                                                          | 7.3  | 84        |
| 72 | A novel nonaqueous route to V2O3 and Nb2O5 nanocrystals. Colloids and Surfaces A:<br>Physicochemical and Engineering Aspects, 2004, 250, 211-213.                                                                                         | 2.3  | 82        |

| #  | Article                                                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Nonaqueous synthesis of crystalline anatase nanoparticles in simple ketones and aldehydes as oxygen-supplying agents. Chemical Communications, 2005, , 397.                                                                                                       | 2.2  | 81        |
| 74 | Effect of the chemical composition on the sensing properties of In2O3–SnO2 nanoparticles synthesized by a non-aqueous method. Sensors and Actuators B: Chemical, 2008, 130, 222-230.                                                                              | 4.0  | 81        |
| 75 | Efficient microwave-assisted synthesis of LiFePO4 mesocrystals with high cycling stability. Journal of<br>Materials Chemistry, 2009, 19, 5125.                                                                                                                    | 6.7  | 80        |
| 76 | Understanding the Charge Storage Mechanism to Achieve High Capacity and Fast Ion Storage in<br>Sodiumâ€Ion Capacitor Anodes by Using Electrospun Nitrogenâ€Doped Carbon Fibers. Advanced Functional<br>Materials, 2019, 29, 1902858.                              | 7.8  | 79        |
| 77 | Anisotropic Crystal Growth Kinetics of Anatase TiO <sub>2</sub> Nanoparticles Synthesized in a<br>Nonaqueous Medium. Chemistry of Materials, 2010, 22, 6044-6055.                                                                                                 | 3.2  | 77        |
| 78 | Template-free co-assembly of preformed Au and TiO2 nanoparticles into multicomponent 3D aerogels.<br>Journal of Materials Chemistry, 2011, 21, 16893.                                                                                                             | 6.7  | 77        |
| 79 | Morphology-controlled nonaqueous synthesis of anisotropic lanthanum hydroxide nanoparticles.<br>Journal of Solid State Chemistry, 2007, 180, 2154-2165.                                                                                                           | 1.4  | 76        |
| 80 | Microwave-assisted solution synthesis of doped LiFePO4 with high specific charge and outstanding cycling performance. Journal of Materials Chemistry, 2011, 21, 5881.                                                                                             | 6.7  | 76        |
| 81 | New developments in the nonaqueous and/or non-hydrolytic sol–gel synthesis of inorganic nanoparticles. Electrochimica Acta, 2010, 55, 7717-7725.                                                                                                                  | 2.6  | 74        |
| 82 | Photocatalytic Gas Phase Reactions. Chemistry of Materials, 2019, 31, 597-618.                                                                                                                                                                                    | 3.2  | 74        |
| 83 | Fast Naâ€Ion Intercalation in Zinc Vanadate for Highâ€Performance Naâ€Ion Hybrid Capacitor. Advanced<br>Energy Materials, 2018, 8, 1802800.                                                                                                                       | 10.2 | 72        |
| 84 | A highly sensitive oxygen sensor operating at room temperature based on platinum-doped In2O3 nanocrystals. Chemical Communications, 2005, , 6032.                                                                                                                 | 2.2  | 71        |
| 85 | A Micromolding Method for Transparent and Flexible Thinâ€Film Supercapacitors and Hybrid Supercapacitors. Advanced Functional Materials, 2020, 30, 2004410.                                                                                                       | 7.8  | 70        |
| 86 | Controlled fabrication of porous metals from the nanometer to the macroscopic scale. Materials Horizons, 2015, 2, 359-377.                                                                                                                                        | 6.4  | 69        |
| 87 | Amorphous cobalt silicate nanobelts@carbon composites as a stable anode material for lithium ion batteries. Chemical Science, 2015, 6, 6908-6915.                                                                                                                 | 3.7  | 69        |
| 88 | Preparation of Ligand-Free TiO <sub>2</sub> (Anatase) Nanoparticles through a Nonaqueous Process<br>and Their Surface Functionalization. Langmuir, 2008, 24, 6988-6997.                                                                                           | 1.6  | 68        |
| 89 | Simultaneous formation of ferrite nanocrystals and deposition of thin films via a microwave-assisted nonaqueous sol–gel process. Journal of Sol-Gel Science and Technology, 2011, 57, 313-322.                                                                    | 1.1  | 68        |
| 90 | CoFe <sub>2</sub> O <sub>4</sub> and CoFe <sub>2</sub> O <sub>4</sub> â€SiO <sub>2</sub> Nanoparticle<br>Thin Films with Perpendicular Magnetic Anisotropy for Magnetic and Magnetoâ€Optical Applications.<br>Advanced Functional Materials, 2016, 26, 1954-1963. | 7.8  | 68        |

| #   | Article                                                                                                                                                                                                                | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91  | Self-Assembly of Metal and Metal Oxide Nanoparticles and Nanowires into a Macroscopic Ternary<br>Aerogel Monolith with Tailored Photocatalytic Properties. Chemistry of Materials, 2014, 26, 5576-5584.                | 3.2  | 67        |
| 92  | Impact of sonication pretreatment on carbon nanotubes: A transmission electron microscopy study.<br>Carbon, 2013, 61, 404-411.                                                                                         | 5.4  | 62        |
| 93  | Ligand and solvent effects in the nonaqueous synthesis of highly ordered anisotropic tungsten oxide nanostructures. Journal of Materials Chemistry, 2006, 16, 3969.                                                    | 6.7  | 61        |
| 94  | Solvothermal and surfactant-free synthesis of crystalline Nb2O5, Ta2O5, HfO2, and Co-doped HfO2 nanoparticles. Physical Chemistry Chemical Physics, 2010, 12, 15537.                                                   | 1.3  | 61        |
| 95  | High-Quality Transparent Electrodes Spin-Cast from Preformed Antimony-Doped Tin Oxide<br>Nanocrystals for Thin Film Optoelectronics. Chemistry of Materials, 2013, 25, 4901-4907.                                      | 3.2  | 61        |
| 96  | Influence of carbon enrichment on electrical conductivity and processing of polycarbosilane derived ceramic for MEMS applications. Journal of the European Ceramic Society, 2014, 34, 3559-3570.                       | 2.8  | 61        |
| 97  | Translucent nanoparticle-based aerogel monoliths as 3-dimensional photocatalysts for the selective photoreduction of CO <sub>2</sub> to methanol in a continuous flow reactor. Materials Horizons, 2017, 4, 1115-1121. | 6.4  | 61        |
| 98  | Nonaqueous Synthesis of Nanocrystalline Indium Oxide and Zinc Oxide in the Oxygen-Free Solvent<br>Acetonitrile. Crystal Growth and Design, 2007, 7, 113-116.                                                           | 1.4  | 60        |
| 99  | Transparent Conducting Films of Antimonyâ€Doped Tin Oxide with Uniform Mesostructure Assembled from Preformed Nanocrystals. Small, 2010, 6, 633-637.                                                                   | 5.2  | 59        |
| 100 | Assembly of BaTiO <sub>3</sub> Nanocrystals into Macroscopic Aerogel Monoliths with High Surface<br>Area. Angewandte Chemie - International Edition, 2014, 53, 6823-6826.                                              | 7.2  | 58        |
| 101 | Ultrasmall Cu <sub>3</sub> N Nanoparticles: Surfactant-Free Solution-Phase Synthesis, Nitridation<br>Mechanism, and Application for Lithium Storage. Chemistry of Materials, 2015, 27, 8282-8288.                      | 3.2  | 58        |
| 102 | Monolithic metal-containing TiO2 aerogels assembled from crystalline pre-formed nanoparticles as<br>efficient photocatalysts for H2 generation. Applied Catalysis B: Environmental, 2020, 267, 118660.                 | 10.8 | 57        |
| 103 | Multiscale Nanoparticle Assembly: From Particulate Precise Manufacturing to Colloidal Processing.<br>Advanced Functional Materials, 2017, 27, 1703647.                                                                 | 7.8  | 56        |
| 104 | Low-Temperature Synthesis of Î <sup>3</sup> -Alumina Nanocrystals from Aluminum Acetylacetonate in Nonaqueous<br>Media. Small, 2007, 3, 763-767.                                                                       | 5.2  | 54        |
| 105 | Microwave-Assisted Nonaqueous Sol–Gel Synthesis: From Al:ZnO Nanoparticles to Transparent<br>Conducting Films. ACS Sustainable Chemistry and Engineering, 2013, 1, 152-160.                                            | 3.2  | 54        |
| 106 | Size-Dependent Luminescence in HfO <sub>2</sub> Nanocrystals: Toward White Emission from<br>Intrinsic Surface Defects. Chemistry of Materials, 2016, 28, 3245-3253.                                                    | 3.2  | 54        |
| 107 | Mechanistic aspects of molecular formation and crystallization of zinc oxide nanoparticles in benzyl alcohol. Nanoscale, 2012, 4, 1982-1995.                                                                           | 2.8  | 53        |
| 108 | Liquidâ€Phase Deposition of Freestanding Copper Foils and Supported Copper Thin Films and Their<br>Structuring into Conducting Line Patterns. Angewandte Chemie - International Edition, 2012, 51,<br>4743-4746.       | 7.2  | 53        |

| #   | Article                                                                                                                                                                                                  | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Nonaqueous synthesis, assembly and formation mechanisms of metal oxide nanocrystals.<br>International Journal of Nanotechnology, 2007, 4, 263.                                                           | 0.1 | 52        |
| 110 | Self-assembly in inorganic and hybrid systems: beyond the molecular scale. Dalton Transactions, 2008, , 18-24.                                                                                           | 1.6 | 52        |
| 111 | Improved Nonaqueous Synthesis of TiO <sub>2</sub> for Dye-Sensitized Solar Cells. ACS Nano, 2013, 7, 8981-8989.                                                                                          | 7.3 | 52        |
| 112 | Nonaqueous Synthesis of Amorphous Powder Precursors for Nanocrystalline PbTiO3, Pb(Zr,Ti)O3, and PbZrO3. Chemistry of Materials, 2005, 17, 4594-4599.                                                    | 3.2 | 51        |
| 113 | Nanoparticle-Based Magnetoelectric BaTiO <sub>3</sub> –CoFe <sub>2</sub> O <sub>4</sub> Thin Film<br>Heterostructures for Voltage Control of Magnetism. ACS Nano, 2016, 10, 9840-9851.                   | 7.3 | 48        |
| 114 | Hydrogel-derived foams of nitrogen-doped carbon loaded with Sn nanodots for high-mass-loading<br>Na-ion storage. Energy Storage Materials, 2019, 16, 519-526.                                            | 9.5 | 47        |
| 115 | Towards enhanced performances in gas sensing: SnO2 based nanocrystalline oxides application.<br>Sensors and Actuators B: Chemical, 2007, 122, 564-571.                                                   | 4.0 | 46        |
| 116 | Microwave-assisted nonaqueous synthesis of WO <sub>3</sub> nanoparticles for crystallographically oriented photoanodes for water splitting. Journal of Materials Chemistry A, 2014, 2, 20530-20537.      | 5.2 | 46        |
| 117 | Nonaqueous Synthesis of Colloidal ZnGa2O4Nanocrystals and Their Photoluminescence Properties.<br>Chemistry of Materials, 2007, 19, 5830-5832.                                                            | 3.2 | 45        |
| 118 | Crystallization of Indium Tin Oxide Nanoparticles: From Cooperative Behavior to Individuality. Small, 2007, 3, 310-317.                                                                                  | 5.2 | 45        |
| 119 | Black Titania with Nanoscale Helicity. Advanced Functional Materials, 2019, 29, 1904639.                                                                                                                 | 7.8 | 45        |
| 120 | Multifunctional Batteries: Flexible, Transient, and Transparent. ACS Central Science, 2021, 7, 231-244.                                                                                                  | 5.3 | 45        |
| 121 | Titania-Cellulose Hybrid Monolith for In-Flow Purification of Water under Solar Illumination. ACS<br>Applied Materials & Interfaces, 2018, 10, 29599-29607.                                              | 4.0 | 44        |
| 122 | Towards fast-charging technologies in Li <sup>+</sup> /Na <sup>+</sup> storage: from the perspectives of pseudocapacitive materials and non-aqueous hybrid capacitors. Nanoscale, 2019, 11, 19225-19240. | 2.8 | 44        |
| 123 | Degradation Behavior, Biocompatibility, Electrochemical Performance, and Circularity Potential of<br>Transient Batteries. Advanced Science, 2021, 8, 2004814.                                            | 5.6 | 44        |
| 124 | Assembly of antimony doped tin oxide nanocrystals into conducting macroscopic aerogel monoliths.<br>Chemical Communications, 2014, 50, 13138-13141.                                                      | 2.2 | 43        |
| 125 | Tailoring Two Polymorphs of LiFePO4 by Efficient Microwave-Assisted Synthesis: A Combined Experimental and Theoretical Study. Chemistry of Materials, 2013, 25, 3399-3407.                               | 3.2 | 40        |
| 126 | Oxygen Self-Doping in Hollandite-Type Vanadium Oxyhydroxide Nanorods. Journal of the American<br>Chemical Society, 2008, 130, 11364-11375.                                                               | 6.6 | 39        |

| #   | Article                                                                                                                                                                                                                   | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | The Cross-Sectional Structure of Vanadium Oxide Nanotubes Studied by Transmission Electron<br>Microscopy and Electron Spectroscopic Imaging. Zeitschrift Fur Anorganische Und Allgemeine<br>Chemie, 2000, 626, 2208-2216. | 0.6 | 37        |
| 128 | Generalized Nonaqueous Sol–Gel Synthesis of Different Transitionâ€Metal Niobate Nanocrystals and<br>Analysis of the Growth Mechanism. Chemistry - an Asian Journal, 2008, 3, 746-752.                                     | 1.7 | 37        |
| 129 | Anatase–silica composite aerogels: a nanoparticle-based approach. Journal of Sol-Gel Science and<br>Technology, 2014, 70, 300-306.                                                                                        | 1.1 | 37        |
| 130 | Anisotropically structured magnetic aerogel monoliths. Nanoscale, 2014, 6, 13213-13221.                                                                                                                                   | 2.8 | 37        |
| 131 | Evaporation-Induced Self-Assembly of Ultrathin Tungsten Oxide Nanowires over a Large Scale for<br>Ultraviolet Photodetector. Langmuir, 2016, 32, 2474-2481.                                                               | 1.6 | 37        |
| 132 | Structural Characterization of a Nanocrystalline Inorganicâ^'Organic Hybrid with Fiberlike<br>Morphology and One-Dimensional Antiferromagnetic Properties. Chemistry of Materials, 2009, 21,<br>3356-3369.                | 3.2 | 36        |
| 133 | Transient Rechargeable Battery with a High Lithium Transport Number Cellulosic Separator. Advanced<br>Functional Materials, 2021, 31, 2101827.                                                                            | 7.8 | 36        |
| 134 | Extension of the benzyl alcohol route to metal sulfides: "nonhydrolytic―thio sol–gel synthesis of<br>ZnS and SnS2. Chemical Communications, 2011, 47, 5280.                                                               | 2.2 | 35        |
| 135 | Hierarchical Nanocelluloseâ€Based Gel Polymer Electrolytes for Stable Na Electrodeposition in Sodium<br>Ion Batteries. Small, 2022, 18, e2107183.                                                                         | 5.2 | 35        |
| 136 | Design of vanadium oxide core–shell nanoplatelets for lithium ion storage. Journal of Materials<br>Chemistry A, 2015, 3, 2861-2868.                                                                                       | 5.2 | 34        |
| 137 | Homoconjugation in poly(phenylene methylene)s: A case study of non-Ï€-conjugated polymers with<br>unexpected fluorescent properties. Journal of Polymer Science, Part B: Polymer Physics, 2017, 55,<br>707-720.           | 2.4 | 34        |
| 138 | The Role of Interfaces in Heterostructures. ChemPlusChem, 2017, 82, 42-59.                                                                                                                                                | 1.3 | 33        |
| 139 | Direct Imaging of Dopant Clustering in Metal–Oxide Nanoparticles. ACS Nano, 2012, 6, 7077-7083.                                                                                                                           | 7.3 | 32        |
| 140 | Subpicosecond to Second Time-Scale Charge Carrier Kinetics in Hematite–Titania Nanocomposite<br>Photoanodes. Journal of Physical Chemistry Letters, 2015, 6, 2859-2864.                                                   | 2.1 | 31        |
| 141 | From 1D to 3D – macroscopic nanowire aerogel monoliths. Nanoscale, 2016, 8, 14074-14077.                                                                                                                                  | 2.8 | 31        |
| 142 | Synthesis of mesoporous ceria zirconia beads. Microporous and Mesoporous Materials, 2007, 101, 413-418.                                                                                                                   | 2.2 | 29        |
| 143 | Benzylamines as Versatile Agents for the Oneâ€Pot Synthesis and Highly Ordered Stacking of Anatase<br>Nanoplatelets. European Journal of Inorganic Chemistry, 2008, 2008, 890-895.                                        | 1.0 | 29        |
| 144 | A comprehensive study of the crystallization mechanism involved in the nonaqueous formation of tungstite. Nanoscale, 2013, 5, 8517.                                                                                       | 2.8 | 29        |

| #   | Article                                                                                                                                                                                                                        | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 145 | Matching the organic and inorganic counterparts during nucleation and growth of copper-based nanoparticles – <i>in situ</i> spectroscopic studies. CrystEngComm, 2015, 17, 6962-6971.                                          | 1.3  | 29        |
| 146 | Heterostructure formation from hydrothermal annealing of preformed nanocrystals. Journal of Materials Chemistry A, 2015, 3, 2216-2225.                                                                                         | 5.2  | 29        |
| 147 | Synthesis, Spray Deposition, and Hot-Press Transfer of Copper Nanowires for Flexible Transparent<br>Electrodes. ACS Applied Materials & Interfaces, 2018, 10, 20748-20754.                                                     | 4.0  | 29        |
| 148 | The first oxide nanotubes with alternating inter-layer distances. Solid State Ionics, 2001, 141-142, 185-190.                                                                                                                  | 1.3  | 28        |
| 149 | Design of multicomponent aerogels and their performance in photocatalytic hydrogen production.<br>Catalysis Today, 2015, 246, 101-107.                                                                                         | 2.2  | 28        |
| 150 | Self-Assembly Route to TiO <sub>2</sub> and TiC with a Liquid Crystalline Order. Chemistry of Materials, 2019, 31, 2174-2181.                                                                                                  | 3.2  | 28        |
| 151 | Coâ€operative Formation of Monolithic Tungsten Oxide–Polybenzylene Hybrids via Polymerization of<br>Benzyl Alcohol and Study of the Catalytic Activity of the Tungsten Oxide Nanoparticles. Small, 2010, 6,<br>960-966.        | 5.2  | 27        |
| 152 | Study of the Chemical Mechanism Involved in the Formation of Tungstite in Benzyl Alcohol by the Advanced QEXAFS Technique. Chemistry - A European Journal, 2012, 18, 2305-2312.                                                | 1.7  | 27        |
| 153 | Non-aqueous sol–gel synthesis of hybrid rare-earth-doped<br>γ-Ga <sub>2</sub> O <sub>3</sub> nanoparticles with multiple organic–inorganic-ionic light-emission<br>features. Journal of Materials Chemistry C, 2015, 3, 41-45. | 2.7  | 27        |
| 154 | Structurally disordered Ta2O5 aerogel for high-rate and highly stable Li-ion and Na-ion storage through surface redox pseudocapacitance. Electrochimica Acta, 2019, 321, 134645.                                               | 2.6  | 27        |
| 155 | Chemistry and physics of metal oxide nanostructures. Physical Chemistry Chemical Physics, 2009, 11, 3607.                                                                                                                      | 1.3  | 26        |
| 156 | Wetâ€Chemical Preparation of Copper Foam Monoliths with Tunable Densities and Complex<br>Macroscopic Shapes. Advanced Materials, 2013, 25, 5599-5604.                                                                          | 11.1 | 26        |
| 157 | Layered metal vanadates with different interlayer cations for high-rate Na-ion storage. Journal of<br>Materials Chemistry A, 2019, 7, 16109-16116.                                                                             | 5.2  | 26        |
| 158 | Layered hybrid organic–inorganic nanobelts exhibiting a field-induced magnetic transition. Physical<br>Chemistry Chemical Physics, 2009, 11, 6166.                                                                             | 1.3  | 25        |
| 159 | Aliovalent Ni in MoO <sub>2</sub> Lattice— Probing the Structure and Valence of Ni and Its<br>Implication on the Electrochemical Performance. Chemistry of Materials, 2014, 26, 4505-4513.                                     | 3.2  | 25        |
| 160 | Design and Fabrication of Transparent and Stretchable Zinc Ion Batteries. ACS Applied Energy<br>Materials, 2021, 4, 6166-6179.                                                                                                 | 2.5  | 25        |
| 161 | Synthesis and functional verification of the unsupported active phase of VxOy catalysts for partial oxidation of n-butane. Journal of Catalysis, 2005, 236, 221-232.                                                           | 3.1  | 24        |
| 162 | Rare earth oxycarbonates as a material class for chemoresistive CO2 gas sensors. Procedia<br>Engineering, 2010, 5, 139-142.                                                                                                    | 1.2  | 24        |

| #   | Article                                                                                                                                                                                                                            | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Liquid-phase deposition of ferroelectrically switchable nanoparticle-based BaTiO <sub>3</sub> films of macroscopically controlled thickness. Journal of Materials Chemistry C, 2015, 3, 9833-9841.                                 | 2.7 | 24        |
| 164 | Demonstration of cellular imaging by using luminescent and anti-cytotoxic europium-doped hafnia nanocrystals. Nanoscale, 2018, 10, 7933-7940.                                                                                      | 2.8 | 24        |
| 165 | Magnetite/maghemite mixture prepared in benzyl alcohol for the preparation of α″-Fe16N2 with α-Fe.<br>Journal of the European Ceramic Society, 2011, 31, 2471-2474.                                                                | 2.8 | 22        |
| 166 | Chemical Substitution - Alignment of the Surface Potentials for Efficient Charge Transport in Nanocrystalline TiO <sub>2</sub> Photocatalysts. Chemistry of Materials, 2016, 28, 4223-4230.                                        | 3.2 | 22        |
| 167 | Electroless plating of platinum nanoparticles onto mesoporous cellulose films for catalytically active free-standing materials. Cellulose, 2019, 26, 5513-5527.                                                                    | 2.4 | 22        |
| 168 | Gas-Phase Nitrogen Doping of Monolithic TiO <sub>2</sub> Nanoparticle-Based Aerogels for Efficient<br>Visible Light-Driven Photocatalytic H <sub>2</sub> Production. ACS Applied Materials & Interfaces,<br>2021, 13, 53691-53701. | 4.0 | 22        |
| 169 | The Importance of the Macroscopic Geometry in Gasâ€Phase Photocatalysis. Advanced Science, 2022, 9, e2105363.                                                                                                                      | 5.6 | 22        |
| 170 | Commercially Available WO <sub>3</sub> Nanopowders for Photoelectrochemical Water Splitting:<br>Photocurrent versus Oxygen Evolution. ChemPlusChem, 2016, 81, 935-940.                                                             | 1.3 | 21        |
| 171 | Atomic-scale structure of nanocrystalline CeO2–ZrO2oxides by total x-ray diffraction and pair distribution function analysis. Journal of Physics Condensed Matter, 2007, 19, 156205.                                               | 0.7 | 20        |
| 172 | Formation Mechanism of LiFePO <sub>4</sub> Sticks Grown by a Microwaveâ€Assisted Liquidâ€Phase<br>Process. Small, 2012, 8, 2231-2238.                                                                                              | 5.2 | 20        |
| 173 | Transparent conducting Sn:ZnO films deposited from nanoparticles. Journal of Sol-Gel Science and Technology, 2013, 65, 28-35.                                                                                                      | 1.1 | 20        |
| 174 | Multiscale anode materials in lithium ion batteries by combining micro- with nanoparticles: design of<br>mesoporous TiO <sub>2</sub> microfibers@nitrogen doped carbon composites. Nanoscale, 2015, 7,<br>13898-13906.             | 2.8 | 20        |
| 175 | Stable Na Electrodeposition Enabled by Agarose-Based Water-Soluble Sodium Ion Battery Separators.<br>ACS Applied Materials & Interfaces, 2021, 13, 21250-21260.                                                                    | 4.0 | 20        |
| 176 | Porous Silica Microspheres with Immobilized Titania Nanoparticles for Inâ€Flow Solarâ€Driven<br>Purification of Wastewater. Global Challenges, 2021, 5, 2000116.                                                                   | 1.8 | 20        |
| 177 | A study on the microstructure and gas sensing properties of ITO nanocrystals. Thin Solid Films, 2007, 515, 8637-8640.                                                                                                              | 0.8 | 19        |
| 178 | Assembly of ultrasmall Cu3N nanoparticles into three-dimensional porous monolithic aerogels.<br>Dalton Transactions, 2016, 45, 11616-11619.                                                                                        | 1.6 | 19        |
| 179 | Chlorine borrowing: an efficient method for an easier use of alcohols as alkylation agents. Green Chemistry, 2009, 11, 34-37.                                                                                                      | 4.6 | 17        |
| 180 | Multifunctional microparticles with uniform magnetic coatings and tunable surface chemistry. RSC Advances, 2014, 4, 62483-62491.                                                                                                   | 1.7 | 17        |

| #   | Article                                                                                                                                                                                                                                  | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 181 | Synthesis of a rare-earth doped hafnia hydrosol: Towards injectable luminescent nanocolloids.<br>Colloids and Surfaces B: Biointerfaces, 2017, 154, 21-26.                                                                               | 2.5 | 17        |
| 182 | Doping of TiO <sub>2</sub> as a tool to optimize the water splitting efficiencies of titania–hematite photoanodes. Sustainable Energy and Fuels, 2017, 1, 199-206.                                                                       | 2.5 | 17        |
| 183 | Tungsten Oxide Nanowires-Based Ammonia Gas Sensors. Sensor Letters, 2008, 6, 590-595.                                                                                                                                                    | 0.4 | 17        |
| 184 | 3D Printed Scaffolds for Monolithic Aerogel Photocatalysts with Complex Geometries. Small, 2021, 17, e2104089.                                                                                                                           | 5.2 | 17        |
| 185 | Beyond conventional sodium-ion storage mechanisms: a combinational intercalation/conversion<br>reaction mechanism in Ni-ion modified hydrated vanadate for high-rate sodium-ion storage. Energy<br>Storage Materials, 2022, 47, 579-590. | 9.5 | 17        |
| 186 | Rationale for the crystallization of titania polymorphs in solution. Nanoscale, 2014, 6, 14716-14723.                                                                                                                                    | 2.8 | 16        |
| 187 | Layered hydrotalcite derived holey porous cobalt oxide nanosheets coated with nitrogen-doped<br>carbon for high-mass-loading Li-ion storage. Journal of Materials Chemistry A, 2020, 8, 26150-26157.                                     | 5.2 | 16        |
| 188 | A Sodium-Ion Battery Separator with Reversible Voltage Response Based on Water-Soluble Cellulose<br>Derivatives. ACS Applied Materials & Interfaces, 2020, 12, 29264-29274.                                                              | 4.0 | 16        |
| 189 | Microwave-Assisted Nonaqueous Sol–Gel Deposition of Different Spinel Ferrites and Barium Titanate<br>Perovskite Thin Films. Chimia, 2010, 64, 170.                                                                                       | 0.3 | 15        |
| 190 | Superparamagnetic core–shell nanoparticles as solid supports for peptide synthesis. Chemical<br>Communications, 2012, 48, 7176.                                                                                                          | 2.2 | 15        |
| 191 | Double role of polyethylene glycol in the microwaves-assisted non-hydrolytic synthesis of<br>nanometric TiO2: oxygen source and stabilizing agent. Journal of Nanoparticle Research, 2014, 16, 1.                                        | 0.8 | 15        |
| 192 | A novel non-aqueous sol–gel route for the in situ synthesis of high loaded silica–rubber<br>nanocomposites. Soft Matter, 2014, 10, 2234-2244.                                                                                            | 1.2 | 15        |
| 193 | Carbon–metal interfaces analyzed by aberration-corrected TEM: How copper and nickel nanoparticles interact with MWCNTs. Micron, 2015, 72, 52-58.                                                                                         | 1.1 | 15        |
| 194 | Synthesis and fractionation of poly(phenylene methylene). Journal of Polymer Science Part A, 2018, 56, 309-318.                                                                                                                          | 2.5 | 15        |
| 195 | Nonaqueous liquid-phase synthesis of nanocrystalline metal carbodiimides. A proof of concept for copper and manganese carbodiimides. Journal of Materials Chemistry, 2009, 19, 5122.                                                     | 6.7 | 14        |
| 196 | Multicomposite Nanostructured Hematite–Titania Photoanodes with Improved Oxygen Evolution: The<br>Role of the Oxygen Evolution Catalyst. ACS Omega, 2017, 2, 4531-4539.                                                                  | 1.6 | 14        |
| 197 | Nonaqueous Sol–Gel Synthesis of Anatase Nanoparticles and Their Electrophoretic Deposition in<br>Porous Alumina. Langmuir, 2017, 33, 12404-12418.                                                                                        | 1.6 | 14        |
| 198 | SnS/N-Doped carbon composites with enhanced Li <sup>+</sup> storage and lifetime by controlled hierarchical submicron- and nano-structuring. CrystEngComm, 2020, 22, 1547-1554.                                                          | 1.3 | 14        |

| #   | Article                                                                                                                                                                                         | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 199 | Interplay between the local structural disorder and the length of structural coherence in stabilizing the cubic phase in nanocrystalline ZrO2. Solid State Communications, 2006, 138, 279-284.  | 0.9 | 13        |
| 200 | Colloidal Nanocrystal-Based BaTiO3 Xerogels as Green Bodies: Effect of Drying and Sintering at Low<br>Temperatures on Pore Structure and Microstructures. Langmuir, 2017, 33, 280-287.          | 1.6 | 13        |
| 201 | The Bright Xâ€Ray Stimulated Luminescence of HfO <sub>2</sub> Nanocrystals Activated by Ti Ions.<br>Advanced Optical Materials, 2020, 8, 1901348.                                               | 3.6 | 13        |
| 202 | Insights into light and mass transport in nanoparticle-based aerogels: the advantages of monolithic 3D photocatalysts. Journal of Materials Chemistry A, 2021, 9, 22380-22391.                  | 5.2 | 13        |
| 203 | Processing of Cr doped SrTiO3 nanoparticles into high surface area aerogels and thin films. Materials<br>Chemistry Frontiers, 2017, 1, 1662-1667.                                               | 3.2 | 12        |
| 204 | Poly(Phenylene Methylene): A Multifunctional Material for Thermally Stable, Hydrophobic,<br>Fluorescent, Corrosion-Protective Coatings. Coatings, 2018, 8, 274.                                 | 1.2 | 12        |
| 205 | Nonaqueous Sol–Gel Routes to Nanocrystalline Metal Oxides. , 0, , 119-137.                                                                                                                      |     | 11        |
| 206 | Strategies to improve the electrical conductivity of nanoparticle-based antimony-doped tin oxide aerogels. Journal of Sol-Gel Science and Technology, 2016, 80, 660-666.                        | 1.1 | 11        |
| 207 | Synthesis and Formation Mechanism of Multicomponent Sb–Nb:TiO <sub>2</sub> Mesocrystals.<br>Chemistry of Materials, 2017, 29, 10113-10121.                                                      | 3.2 | 11        |
| 208 | Nonaqueous Synthesis of Barium Titanate Nanocrystals in Acetophenone as Oxygen Supplying Agent.<br>Materials Research Society Symposia Proceedings, 2005, 879, 1.                               | 0.1 | 10        |
| 209 | Mechanistic Studies as a Tool for the Design of Copperâ€Based Heterostructures. Advanced Materials<br>Interfaces, 2015, 2, 1500094.                                                             | 1.9 | 10        |
| 210 | Surface energy-driven <i>ex situ</i> hierarchical assembly of low-dimensional nanomaterials on graphene aerogels: a versatile strategy. Journal of Materials Chemistry A, 2018, 6, 18551-18560. | 5.2 | 10        |
| 211 | Radio-luminescence spectral features and fast emission in hafnium dioxide nanocrystals. Physical<br>Chemistry Chemical Physics, 2018, 20, 15907-15915.                                          | 1.3 | 10        |
| 212 | Poly(phenylene methylene)-Based Coatings for Corrosion Protection: Replacement of Additives by Use<br>of Copolymers. Applied Sciences (Switzerland), 2019, 9, 3551.                             | 1.3 | 10        |
| 213 | CO2 sensing with chemoresistive Nd2O2CO3 sensors - Operando insights. Procedia Chemistry, 2009, 1, 650-653.                                                                                     | 0.7 | 9         |
| 214 | Microwaveâ€Assisted Nonaqueous Synthesis of Doped Ceria Nanoparticles Assembled into Flakes.<br>Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2014, 640, 733-737.                         | 0.6 | 9         |
| 215 | Electrophoretic deposition of nano-sized BaTiO3. Journal of Materials Science, 2006, 41, 8196-8201.                                                                                             | 1.7 | 8         |
| 216 | Antimony doped tin oxide nanoparticles and their assembly in mesostructured film. Physica Status<br>Solidi C: Current Topics in Solid State Physics, 2011, 8, 1759-1763.                        | 0.8 | 8         |

| #   | Article                                                                                                                                                                                                                                   | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 217 | Single-step functionalization of vertically aligned MWCNTs with Cu and Ni by chemical reduction of copper and nickel acetyl acetonate in benzyl alcohol. Carbon, 2014, 73, 146-154.                                                       | 5.4 | 8         |
| 218 | PbZr1â^'xTixO3by soft synthesis: Structural aspects. Physical Review B, 2007, 76, .                                                                                                                                                       | 1.1 | 7         |
| 219 | Microwave Chemistry: Towards Predictable Nanoparticle Synthesis. Chimia, 2009, 63, 581-581.                                                                                                                                               | 0.3 | 7         |
| 220 | Faster Response Times of Rare-Earth Oxycarbonate Based Co2 Sensors and Another Readout Strategy for Real-World Applications. Procedia Engineering, 2011, 25, 1429-1432.                                                                   | 1.2 | 7         |
| 221 | A poly-(styrene-acrylonitrile) copolymer-derived hierarchical architecture in electrode materials for<br>lithium-ion batteries. Journal of Materials Chemistry A, 2016, 4, 11481-11490.                                                   | 5.2 | 7         |
| 222 | Layered cobalt hydrotalcite as an advanced lithium-ion anode material with high capacity and rate capability. Journal of Materials Chemistry A, 2019, 7, 21264-21269.                                                                     | 5.2 | 7         |
| 223 | Oxide Synthesis as Cornerstone of Nanoscience: Eur. J. Inorg. Chem. 6/2008. European Journal of<br>Inorganic Chemistry, 2008, 2008, 825-825.                                                                                              | 1.0 | 6         |
| 224 | Synthesis of High Molar Mass Poly(phenylene methylene) Catalyzed by Tungsten(II) Compounds.<br>Polymers, 2018, 10, 881.                                                                                                                   | 2.0 | 6         |
| 225 | Fundamentals of nanocrystal formation. CrystEngComm, 2015, 17, 6778-6779.                                                                                                                                                                 | 1.3 | 5         |
| 226 | Nonaqueous solâ€gel synthesis of InTaO <sub>4</sub> nanoparticles and their assembly into macroscopic aerogels. Journal of the American Ceramic Society, 2017, 100, 4483-4490.                                                            | 1.9 | 5         |
| 227 | Freezing of Gelled Suspensions: a Facile Route toward Mesoporous TiO2 Particles for High-Capacity<br>Lithium-Ion Electrodes. ACS Applied Nano Materials, 2018, 1, 6622-6629.                                                              | 2.4 | 5         |
| 228 | Processing of the Multifunctional Polymer Poly(phenylene methylene) into Fibers, Films, Foams, and<br>Microspheres. Macromolecular Materials and Engineering, 2019, 304, 1800752.                                                         | 1.7 | 5         |
| 229 | Adapting the concepts of nonaqueous sol–gel chemistry to metals: synthesis and formation<br>mechanism of palladium and palladium–copper nanoparticles in benzyl alcohol. Journal of Sol-Gel<br>Science and Technology, 2020, 95, 573-586. | 1.1 | 5         |
| 230 | Impregnation of Cellulose Fibers with Copper Colloids and Their Processing into Electrically Conductive Paper. Chemistry of Materials, 2022, 34, 43-52.                                                                                   | 3.2 | 5         |
| 231 | Vanadium Oxide Nanotubes with Diamine Templates. Materials Research Society Symposia Proceedings, 1999, 581, 393.                                                                                                                         | 0.1 | 4         |
| 232 | Nonaqueous synthesis of high-purity indium and tin oxide nanocrystals and their application as gas sensors. , 0, , .                                                                                                                      |     | 4         |
| 233 | Polymers with Exceptional Photoluminescence by Homoconjugation. Chimia, 2017, 71, 733.                                                                                                                                                    | 0.3 | 4         |
| 234 | Benzyl Alcohol and Titanium Tetrachloride - A Versatile Reaction System for the Nonaqueous and<br>Low-Temperature Preparation of Crystalline and Luminescent Titania Nanoparticles ChemInform,<br>2003, 34, no-no.                        | 0.1 | 3         |

| #   | Article                                                                                                                                                                                                                                                      | IF  | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 235 | Colloidal Nanocrystals: A Toolbox for Materials Chemistry. Chimia, 2021, 75, 387.                                                                                                                                                                            | 0.3 | 3         |
| 236 | Synthesis of Cu <sub>3</sub> N and Cu <sub>3</sub> N–Cu <sub>2</sub> O multicomponent<br>mesocrystals: non-classical crystallization and nanoscale Kirkendall effect. Nanoscale, 2021, 13,<br>17521-17529.                                                   | 2.8 | 3         |
| 237 | Nonaqueous and Halide-Free Route to Crystalline BaTiO3, SrTiO3, and (Ba,Sr)TiO3 Nanoparticles via a<br>Mechanism Involving C—C Bond Formation ChemInform, 2004, 35, no.                                                                                      | 0.1 | 2         |
| 238 | Electrophoretic Deposition of Nanocrystalline BaTiO <sub>3</sub> in Ethanol Medium. Key Engineering<br>Materials, 2006, 314, 133-140.                                                                                                                        | 0.4 | 2         |
| 239 | Colloidal Routes to Macroscopic Monoliths of Porous Titania and Copper. Chimia, 2014, 68, 87.                                                                                                                                                                | 0.3 | 2         |
| 240 | Tailoring the phase of Li–Al–O nanoparticles by nonaqueous sol–gel chemistry. Journal of Sol-Gel<br>Science and Technology, 2017, 82, 739-747.                                                                                                               | 1.1 | 1         |
| 241 | Composites of Copper Nanowires in Polyethylene: Preparation and Processing to Materials with NIR Dichroism. ACS Omega, 2019, 4, 11223-11228.                                                                                                                 | 1.6 | 1         |
| 242 | Celebrating 10 years of Nanoscale. Nanoscale, 2019, 11, 18922-18922.                                                                                                                                                                                         | 2.8 | 1         |
| 243 | An advanced cathode material for high-power Li-ion storage full cells with a long lifespan. Journal of<br>Materials Chemistry A, 2019, 7, 22444-22452.                                                                                                       | 5.2 | 1         |
| 244 | A microwaveâ€based oneâ€pot process for homogeneous surface coating: improved electrochemical<br>performance of Li(Ni <sub>1/3</sub> Mn <sub>1/3</sub> Co <sub>1/3</sub> )O <sub>2</sub> with a<br>nanoâ€scaled ZnO:Al layer. Nano Select, 2021, 2, 146-157. | 1.9 | 1         |
| 245 | Towards stable and highâ€capacity anode materials for sodiumâ€ion batteries by embedding of Sb/Sn<br>nanoparticles into electrospun mesoporous carbon fibers. Electrochemical Science Advances, 0, ,<br>e2100010.                                            | 1.2 | 1         |
| 246 | Transient Batteries: A Promising Step Towards Powering Green Electronics. Chimia, 2022, 76, 298.                                                                                                                                                             | 0.3 | 1         |
| 247 | Metal Oxide Nanocrystals: Building Blocks for Mesostructures and Precursors for Metal Nitrides.<br>Materials Research Society Symposia Proceedings, 2007, 1007, 1.                                                                                           | 0.1 | 0         |
| 248 | Nanoscale—a new journal. Nanoscale, 2009, 1, 13.                                                                                                                                                                                                             | 2.8 | 0         |
| 249 | Polymerization of Arylmethyl Alcohols using a Tungsten Oxide Catalyst. Zeitschrift Fur Anorganische<br>Und Allgemeine Chemie, 2010, 636, 2104-2104.                                                                                                          | 0.6 | 0         |
| 250 | Tracking of the organic species during the synthesis of cobalt-based nanoparticles in non-aqueous solution. , 2014, , .                                                                                                                                      |     | 0         |
| 251 | Reply to Comment on "Commercially Available WO3 Nanopowders for Photoelectrochemical Water<br>Splitting: Photocurrent versus Oxygen Evolution― ChemPlusChem, 2017, 82, 1169-1169.                                                                            | 1.3 | 0         |
| 252 | Frontispiece: Mechanistic Aspects in the Formation, Growth and Surface Functionalization of Metal Oxide Nanoparticles in Organic Solvents. Chemistry - A European Journal, 2017, 23, .                                                                       | 1.7 | 0         |