
Chiara Neto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/506257/publications.pdf Version: 2024-02-01

<u> <u>Chiada</u> Neto</u>

#	Article	IF	CITATIONS
1	Nanobubbles explain the large slip observed on lubricant-infused surfaces. Nature Communications, 2022, 13, 351.	5.8	34
2	Design Optimization of Perfluorinated Liquidâ€Infused Surfaces for Bloodâ€Contacting Applications. Advanced Materials Interfaces, 2022, 9, .	1.9	8
3	Pressure Drop Measurements in Microfluidic Devices: A Review on the Accurate Quantification of Interfacial Slip. Advanced Materials Interfaces, 2022, 9, .	1.9	9
4	Pressure Drop Measurements in Microfluidic Devices: A Review on the Accurate Quantification of Interfacial Slip (Adv. Mater. Interfaces 5/2022). Advanced Materials Interfaces, 2022, 9, .	1.9	0
5	Design Optimization of Perfluorinated Liquidâ€Infused Surfaces for Bloodâ€Contacting Applications (Adv.) Tj	ETQq1_1 0.7	'84314 rgBT
6	Quantification of Nucleation Site Density as a Function of Surface Wettability on Smooth Surfaces. Advanced Materials Interfaces, 2022, 9, .	1.9	12
7	Enhancing Spontaneous Droplet Motion on Structured Surfaces with Tailored Wedge Design. Advanced Materials Interfaces, 2021, 8, 2000520.	1.9	8
8	Safer emulsion explosives resulting from NOx inhibition. Chemical Engineering Journal, 2021, 403, 125713.	6.6	4
9	Ultra-thin patchy polymer-coated graphene oxide as a novel anticancer drug carrier. Polymer Chemistry, 2021, 12, 92-104.	1.9	5
10	Antifouling Properties of Liquidâ€Infused Riblets Fabricated by Direct Contactless Microfabrication. Advanced Engineering Materials, 2021, 23, .	1.6	5
11	Droplet Transport: Enhancing Spontaneous Droplet Motion on Structured Surfaces with Tailored Wedge Design (Adv. Mater. Interfaces 2/2021). Advanced Materials Interfaces, 2021, 8, 2170010.	1.9	0
12	Depletion of the Lubricant from Lubricant-Infused Surfaces due to an Air/Water Interface. Langmuir, 2021, 37, 3025-3037.	1.6	25
13	Convergent evolution of skin surface microarchitecture and increased skin hydrophobicity in semi-aquatic anole lizards. Journal of Experimental Biology, 2021, 224, .	0.8	5
14	Evaluating medical device and material thrombosis under flow: current and emerging technologies. Biomaterials Science, 2020, 8, 5824-5845.	2.6	29
15	Soft–hard Janus nanoparticles for polymer encapsulation of solid particulate. Polymer Chemistry, 2020, 11, 5610-5618.	1.9	6
16	Large Effective Slip on Lubricated Surfaces Measured with Colloidal Probe AFM. Langmuir, 2020, 36, 6033-6040.	1.6	17
17	Life and death of liquid-infused surfaces: a review on the choice, analysis and fate of the infused liquid layer. Chemical Society Reviews, 2020, 49, 3688-3715.	18.7	200
18	Ultralow surface energy self-assembled monolayers of iodo-perfluorinated alkanes on silica driven by halogen bonding. Nanoscale, 2019, 11, 2401-2411.	2.8	8

#	Article	IF	Citations
19	Effect of Pore Size, Lubricant Viscosity, and Distribution on the Slippery Properties of Infused Cement Surfaces. Journal of Physical Chemistry C, 2019, 123, 2987-2995.	1.5	24
20	How Slippery are SLIPS? Measuring Effective Slip on Lubricated Surfaces with Colloidal Probe Atmoc Force Microscopy. Langmuir, 2019, 35, 2976-2982.	1.6	34
21	Effect of repeated immersions and contamination on plastron stability in superhydrophobic surfaces. Physics of Fluids, 2019, 31, .	1.6	19
22	Chemical Curiosity on Campus: An Undergraduate Project on the Structure and Wettability of Natural Surfaces. Journal of Chemical Education, 2019, 96, 1998-2002.	1.1	3
23	Host–guest interactions of catechol and 4-ethylcatechol with surface-immobilized blue-box molecules. Journal of Materials Chemistry A, 2019, 7, 12713-12722.	5.2	1
24	Sol-Gel Dewetting: Fabrication of Biomimetic Micropatterned Surfaces by Sol-Gel Dewetting (Adv.) Tj ETQq0 0 0	rgBT/Ove	erlogk 10 Tf 50
25	Halogen-bond driven self-assembly of perfluorocarbon monolayers on silicon nitride. Journal of Materials Chemistry A, 2019, 7, 24445-24453.	5.2	10
26	Fabrication of Biomimetic Micropatterned Surfaces by Sol–Gel Dewetting. Advanced Materials Interfaces, 2019, 6, 1801629.	1.9	12
27	Marine Antifouling Behavior of Lubricant-Infused Nanowrinkled Polymeric Surfaces. ACS Applied Materials & Interfaces, 2018, 10, 4173-4182.	4.0	163
28	The mechanism of the spontaneous detonation of ammonium nitrate in reactive grounds. Journal of Environmental Chemical Engineering, 2018, 6, 281-288.	3.3	18
29	Mapping Depletion of Lubricant Films on Antibiofouling Wrinkled Slippery Surfaces. ACS Applied Materials & Interfaces, 2018, 10, 33669-33677.	4.0	69
30	Aligned Droplet Patterns by Dewetting of Polymer Bilayers. Macromolecules, 2018, 51, 5485-5493.	2.2	9
31	Influence of long-range forces and capillarity on the function of underwater superoleophobic wrinkled surfaces. Soft Matter, 2018, 14, 6627-6634.	1.2	12
32	A review on the mechanical and thermodynamic robustness of superhydrophobic surfaces. Advances in Colloid and Interface Science, 2017, 246, 133-152.	7.0	101
33	Patterned Polymer Coatings Increase the Efficiency of Dew Harvesting. ACS Applied Materials & Interfaces, 2017, 9, 13676-13684.	4.0	67

34	Receding Contact Line Motion on Nanopatterned and Micropatterned Polymer Surfaces. Langmuir, 2017, 33, 12602-12608.	1.6	4

35	Mechanical properties of Ropaque hollow nanoparticles. Polymer, 2017, 131, 10-16.	1.8	7
36	Functional patterned coatings by thin polymer film dewetting. Journal of Colloid and Interface Science, 2017, 507, 453-469.	5.0	26

#	Article	IF	CITATIONS
37	Synthesis and Applications of Polymeric Janus Nanoparticles. , 2017, , 31-68.		2
38	Waterborne, all-polymeric, colloidal â€~raspberry' particles with controllable hydrophobicity and water droplet adhesion properties. Thin Solid Films, 2016, 603, 69-74.	0.8	4
39	"The Good, the Bad, and the Slippery†A Tale of Three Solvents in Polymer Film Dewetting. Macromolecules, 2016, 49, 6590-6598.	2.2	21
40	High Glass Transition Temperature Fluoropolymers for Hydrophobic Surface Coatings via RAFT Copolymerization. Australian Journal of Chemistry, 2016, 69, 725.	0.5	7
41	Chain Collapse and Interfacial Slip of Polystyrene Films in Good/Nonsolvent Vapor Mixtures. Macromolecules, 2016, 49, 1344-1352.	2.2	12
42	Durable Superhydrophobic Surfaces via Spontaneous Wrinkling of Teflon AF. ACS Applied Materials & Interfaces, 2016, 8, 6743-6750.	4.0	72
43	Boundary flow on end-grafted PEG brushes. Soft Matter, 2016, 12, 1906-1914.	1.2	22
44	Colloidal Crystals: Guiding the Dewetting of Thin Polymer Films by Colloidal Imprinting (Adv. Mater.) Tj ETQq0 0	0 rgBT /Ov	verlock 10 Tf !
45	Guiding the Dewetting of Thin Polymer Films by Colloidal Imprinting. Advanced Materials Interfaces, 2015, 2, 1500068.	1.9	5
46	Control of nanoparticle formation using the constrained dewetting of polymer brushes. Nanoscale, 2015, 7, 2894-2899.	2.8	5
47	Micropatterned Surfaces for Atmospheric Water Condensation via Controlled Radical Polymerization and Thin Film Dewetting. ACS Applied Materials & Interfaces, 2015, 7, 21562-21570.	4.0	35
48	Premature detonation of an NH4NO3 emulsion in reactive ground. Journal of Hazardous Materials, 2015, 283, 314-320.	6.5	12
49	Protein Micropatterns by PEG Grafting on Dewetted PLGA Films. Langmuir, 2014, 30, 11714-11722.	1.6	17
50	Interfacial slip on rough, patterned and soft surfaces: A review of experiments and simulations. Advances in Colloid and Interface Science, 2014, 210, 21-38.	7.0	123
51	Mimicking the Wettability of the Rose Petal using Self-assembly of Waterborne Polymer Particles. Chemistry of Materials, 2013, 25, 3472-3479.	3.2	45
52	Robust grafting of PEG-methacrylate brushes from polymeric coatings. Polymer, 2013, 54, 5490-5498.	1.8	7
53	Micron-sized polystyrene particles by surfactant-free emulsion polymerization in air: Synthesis and mechanism. Journal of Polymer Science Part A, 2013, 51, 3997-4002.	2.5	44

Patterned chemisorption of proteins by thin polymer film dewetting. Soft Matter, 2013, 9, 2598. 1.2 17

#	Article	IF	CITATIONS
55	Tunable Nanopatterns via the Constrained Dewetting of Polymer Brushes. Macromolecules, 2013, 46, 6326-6335.	2.2	9
56	Micropatterning of Polymer Brushes: Grafting from Dewetting Polymer Films for Biological Applications. Biomacromolecules, 2012, 13, 2989-2996.	2.6	32
57	Reliable Measurements of Interfacial Slip by Colloid Probe Atomic Force Microscopy. III. Shear-Rate-Dependent Slip. Langmuir, 2012, 28, 3465-3473.	1.6	27
58	Micropatterned substrates made by polymer bilayer dewetting and collagen nanoscale assembly support endothelial cell adhesion. Soft Matter, 2012, 8, 9996.	1.2	20
59	Reconciling Slip Measurements in Symmetric and Asymmetric Systems. Langmuir, 2012, 28, 7768-7774.	1.6	24
60	Interfacial Flow of Simple Liquids on Polymer Brushes: Effect of Solvent Quality and Grafting Density. Macromolecules, 2012, 45, 6241-6252.	2.2	12
61	Early and Intermediate Stages of Guided Dewetting in Polystyrene Thin Films. Langmuir, 2012, 28, 10147-10151.	1.6	25
62	Uptake of water droplets by non-wetting capillaries. Soft Matter, 2011, 7, 2357-2363.	1.2	29
63	Reliable Measurements of Interfacial Slip by Colloid Probe Atomic Force Microscopy. I. Mathematical Modeling. Langmuir, 2011, 27, 6701-6711.	1.6	21
64	Reliable Measurements of Interfacial Slip by Colloid Probe Atomic Force Microscopy. II. Hydrodynamic Force Measurements. Langmuir, 2011, 27, 6712-6719.	1.6	44
65	Competition between Dewetting and Cross-Linking in Poly(<i>N</i> -vinylpyrrolidone)/Polystyrene Bilayer Films. Langmuir, 2011, 27, 14207-14217.	1.6	10
66	Biomimetic Surface Coatings for Atmospheric Water Capture Prepared by Dewetting of Polymer Films. Advanced Materials, 2011, 23, 3718-3722.	11.1	179
67	Thermally Cross-Linked PNVP Films As Antifouling Coatings for Biomedical Applications. ACS Applied Materials & Interfaces, 2010, 2, 2399-2408.	4.0	73
68	Interplay between Dewetting and Layer Inversion in Poly(4-vinylpyridine)/Polystyrene Bilayers. Langmuir, 2010, 26, 15989-15999.	1.6	22
69	On the Superhydrophobic Properties of Crystallized Stearic Acid. Australian Journal of Chemistry, 2010, 63, 525.	0.5	5
70	An experimental study of interactions between droplets and a nonwetting microfluidic capillary. Faraday Discussions, 2010, 146, 233.	1.6	20
71	Self-assembled porphyrin microrods and observation of structure-induced iridescence. Journal of Materials Chemistry, 2010, 20, 2310.	6.7	9
72	Rapid photochromic nanopatterns from block copolymers. Soft Matter, 2010, 6, 909-914.	1.2	19

#	Article	IF	CITATIONS
73	Processing waveguide photonic components into self-assembled organic films. , 2009, , .		Ο
74	Focused ion beam processing and engineering of devices in self-assembled supramolecular structures. Nanotechnology, 2009, 20, 485301.	1.3	4
75	Ordered Microphase Separation in Thin Films of PMMAâ^'PBA Synthesized by RAFT: Effect of Block Polydispersity. Macromolecules, 2009, 42, 3138-3146.	2.2	41
76	On the superhydrophobic properties of nickel nanocarpets. Physical Chemistry Chemical Physics, 2009, 11, 9537.	1.3	24
77	On the Composition of the Top Layer of Microphase Separated Thin PS-PEO Films. Macromolecules, 2009, 42, 4801-4808.	2.2	39
78	Supramolecular porphyrin wires and post-processing. , 2009, , .		0
79	Long self-assembled organic molecular optical wires. , 2008, , .		0
80	A novel approach to the micropatterning of proteins using dewetting of polymer bilayers. Physical Chemistry Chemical Physics, 2007, 9, 149-155.	1.3	34
81	Micropatterning of proteins using dewetting. , 2006, , .		0
82	Self-assembly of magnetic nanoparticles into complex superstructures: Spokes and spirals. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 269, 96-100.	2.3	25
83	Dynamics and structure formation in thin polymer melt films. Journal of Physics Condensed Matter, 2005, 17, S267-S290.	0.7	135
84	Boundary slip in Newtonian liquids: a review of experimental studies. Reports on Progress in Physics, 2005, 68, 2859-2897.	8.1	946
85	The effect of surfactant adsorption on liquid boundary slippage. Physica A: Statistical Mechanics and Its Applications, 2004, 339, 60-65.	1.2	38
86	Dynamics of hole growth in dewetting polystyrene films. Physica A: Statistical Mechanics and Its Applications, 2004, 339, 66-71.	1.2	28
87	Evidence of shear-dependent boundary slip in newtonian liquids. European Physical Journal E, 2003, 12, 71-74.	0.7	89
88	Correlated dewetting patterns in thin polystyrene films. Journal of Physics Condensed Matter, 2003, 15, S421-S426.	0.7	21
89	Satellite hole formation during dewetting: experiment and simulation. Journal of Physics Condensed Matter, 2003, 15, 3355-3366.	0.7	43
90	A New Way to Prepare Nanostructured Materials:Â Flame Spraying of Microemulsions. Journal of Physical Chemistry B, 2002, 106, 6178-6183.	1.2	66

#	Article	IF	CITATIONS
91	Colloidal Particles of Ca(OH)2:  Properties and Applications to Restoration of Frescoes. Langmuir, 2001, 17, 4251-4255.	1.6	184
92	Stable dispersions of Ca(0H)2 in aliphatic alcohols: properties and application in cultural heritage conservation. , 2001, , 68-72.		24
93	Colloid Probe Characterization:  Radius and Roughness Determination. Langmuir, 2001, 17, 2097-2099.	1.6	97
94	In Situ Calibration of Colloid Probe Cantilevers in Force Microscopy:  Hydrodynamic Drag on a Sphere Approaching a Wall. Langmuir, 2001, 17, 6018-6022.	1.6	86
95	Shear-Dependent Boundary Slip in an Aqueous Newtonian Liquid. Physical Review Letters, 2001, 87, 054504.	2.9	441
96	Imaging Soft Matter with the Atomic Force Microscope:  Cubosomes and Hexosomes. Journal of Physical Chemistry B, 1999, 103, 3896-3899.	1.2	77
97	Morphological Characterization of H Aggregates in Langmuirâ^'Blodgett Films of Pyridiniumâ^'Dicyanomethanide Dyes. Langmuir, 1999, 15, 2149-2151.	1.6	21