Chiara Neto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/506257/publications.pdf

Version: 2024-02-01

97 4,448 30
papers citations h-index

97 97 97 4507 all docs docs citations times ranked citing authors

65

g-index

#	Article	IF	CITATIONS
1	Boundary slip in Newtonian liquids: a review of experimental studies. Reports on Progress in Physics, 2005, 68, 2859-2897.	8.1	946
2	Shear-Dependent Boundary Slip in an Aqueous Newtonian Liquid. Physical Review Letters, 2001, 87, 054504.	2.9	441
3	Life and death of liquid-infused surfaces: a review on the choice, analysis and fate of the infused liquid layer. Chemical Society Reviews, 2020, 49, 3688-3715.	18.7	200
4	Colloidal Particles of Ca(OH)2:  Properties and Applications to Restoration of Frescoes. Langmuir, 2001, 17, 4251-4255.	1.6	184
5	Biomimetic Surface Coatings for Atmospheric Water Capture Prepared by Dewetting of Polymer Films. Advanced Materials, 2011, 23, 3718-3722.	11.1	179
6	Marine Antifouling Behavior of Lubricant-Infused Nanowrinkled Polymeric Surfaces. ACS Applied Materials & Samp; Interfaces, 2018, 10, 4173-4182.	4.0	163
7	Dynamics and structure formation in thin polymer melt films. Journal of Physics Condensed Matter, 2005, 17, S267-S290.	0.7	135
8	Interfacial slip on rough, patterned and soft surfaces: A review of experiments and simulations. Advances in Colloid and Interface Science, 2014, 210, 21-38.	7.0	123
9	A review on the mechanical and thermodynamic robustness of superhydrophobic surfaces. Advances in Colloid and Interface Science, 2017, 246, 133-152.	7.0	101
10	Colloid Probe Characterization:  Radius and Roughness Determination. Langmuir, 2001, 17, 2097-2099.	1.6	97
11	Evidence of shear-dependent boundary slip in newtonian liquids. European Physical Journal E, 2003, 12, 71-74.	0.7	89
12	In Situ Calibration of Colloid Probe Cantilevers in Force Microscopy:  Hydrodynamic Drag on a Sphere Approaching a Wall. Langmuir, 2001, 17, 6018-6022.	1.6	86
13	Imaging Soft Matter with the Atomic Force Microscope:  Cubosomes and Hexosomes. Journal of Physical Chemistry B, 1999, 103, 3896-3899.	1.2	77
14	Thermally Cross-Linked PNVP Films As Antifouling Coatings for Biomedical Applications. ACS Applied Materials & Samp; Interfaces, 2010, 2, 2399-2408.	4.0	73
15	Durable Superhydrophobic Surfaces via Spontaneous Wrinkling of Teflon AF. ACS Applied Materials & Samp; Interfaces, 2016, 8, 6743-6750.	4.0	72
16	Mapping Depletion of Lubricant Films on Antibiofouling Wrinkled Slippery Surfaces. ACS Applied Materials & Depletion of Lubricant Films on Antibiofouling Wrinkled Slippery Surfaces. ACS Applied Materials & Depletion of Lubricant Films on Antibiofouling Wrinkled Slippery Surfaces. ACS Applied Materials & Depletion of Lubricant Films on Antibiofouling Wrinkled Slippery Surfaces. ACS Applied Materials & Depletion of Lubricant Films on Antibiofouling Wrinkled Slippery Surfaces. ACS Applied Materials & Depletion of Lubricant Films on Antibiofouling Wrinkled Slippery Surfaces. ACS Applied Materials & Depletion of Lubricant Films on Antibiofouling Wrinkled Slippery Surfaces. ACS Applied Materials & Depletion of Lubricant Films on Antibiofouling Wrinkled Slippery Surfaces. ACS Applied Materials & Depletion of Lubricant Films on Antibiofouling Wrinkled Slippery Surfaces. ACS Applied Materials & Depletion of Lubricant Films on Antibiofouling Wrinkled Slippery Surfaces. ACS Applied Materials & Depletion of Lubricant Films on Antibiofouling Wrinkled Slippery Surfaces. ACS Applied Materials & Depletion of Lubricant Films on Antibiofouling Wrinkled Slippery Surfaces. ACS Applied Materials & Depletion of Lubricant Films on Antibiofouling Wrinkled Slippery Surfaces. ACS Applied Materials & Depletion of Lubricant Films on Antibiofouling Wrinkled Slippery Surfaces. ACS Applied Wrinkled Slippery Surfac	4.0	69
17	Patterned Polymer Coatings Increase the Efficiency of Dew Harvesting. ACS Applied Materials & Samp; Interfaces, 2017, 9, 13676-13684.	4.0	67
18	A New Way to Prepare Nanostructured Materials:Â Flame Spraying of Microemulsions. Journal of Physical Chemistry B, 2002, 106, 6178-6183.	1.2	66

#	Article	IF	Citations
19	Mimicking the Wettability of the Rose Petal using Self-assembly of Waterborne Polymer Particles. Chemistry of Materials, 2013, 25, 3472-3479.	3.2	45
20	Reliable Measurements of Interfacial Slip by Colloid Probe Atomic Force Microscopy. II. Hydrodynamic Force Measurements. Langmuir, 2011, 27, 6712-6719.	1.6	44
21	Micron-sized polystyrene particles by surfactant-free emulsion polymerization in air: Synthesis and mechanism. Journal of Polymer Science Part A, 2013, 51, 3997-4002.	2.5	44
22	Satellite hole formation during dewetting: experiment and simulation. Journal of Physics Condensed Matter, 2003, 15, 3355-3366.	0.7	43
23	Ordered Microphase Separation in Thin Films of PMMAâ^'PBA Synthesized by RAFT: Effect of Block Polydispersity. Macromolecules, 2009, 42, 3138-3146.	2.2	41
24	On the Composition of the Top Layer of Microphase Separated Thin PS-PEO Films. Macromolecules, 2009, 42, 4801-4808.	2.2	39
25	The effect of surfactant adsorption on liquid boundary slippage. Physica A: Statistical Mechanics and Its Applications, 2004, 339, 60-65.	1.2	38
26	Micropatterned Surfaces for Atmospheric Water Condensation via Controlled Radical Polymerization and Thin Film Dewetting. ACS Applied Materials & Samp; Interfaces, 2015, 7, 21562-21570.	4.0	35
27	A novel approach to the micropatterning of proteins using dewetting of polymer bilayers. Physical Chemistry Chemical Physics, 2007, 9, 149-155.	1.3	34
28	How Slippery are SLIPS? Measuring Effective Slip on Lubricated Surfaces with Colloidal Probe Atmoc Force Microscopy. Langmuir, 2019, 35, 2976-2982.	1.6	34
29	Nanobubbles explain the large slip observed on lubricant-infused surfaces. Nature Communications, 2022, 13, 351.	5 . 8	34
30	Micropatterning of Polymer Brushes: Grafting from Dewetting Polymer Films for Biological Applications. Biomacromolecules, 2012, 13, 2989-2996.	2.6	32
31	Uptake of water droplets by non-wetting capillaries. Soft Matter, 2011, 7, 2357-2363.	1.2	29
32	Evaluating medical device and material thrombosis under flow: current and emerging technologies. Biomaterials Science, 2020, 8, 5824-5845.	2.6	29
33	Dynamics of hole growth in dewetting polystyrene films. Physica A: Statistical Mechanics and Its Applications, 2004, 339, 66-71.	1.2	28
34	Reliable Measurements of Interfacial Slip by Colloid Probe Atomic Force Microscopy. III. Shear-Rate-Dependent Slip. Langmuir, 2012, 28, 3465-3473.	1.6	27
35	Functional patterned coatings by thin polymer film dewetting. Journal of Colloid and Interface Science, 2017, 507, 453-469.	5.0	26
36	Self-assembly of magnetic nanoparticles into complex superstructures: Spokes and spirals. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005, 269, 96-100.	2.3	25

#	Article	IF	Citations
37	Early and Intermediate Stages of Guided Dewetting in Polystyrene Thin Films. Langmuir, 2012, 28, 10147-10151.	1.6	25
38	Depletion of the Lubricant from Lubricant-Infused Surfaces due to an Air/Water Interface. Langmuir, 2021, 37, 3025-3037.	1.6	25
39	Stable dispersions of Ca(0H)2 in aliphatic alcohols: properties and application in cultural heritage conservation., 2001,, 68-72.		24
40	On the superhydrophobic properties of nickel nanocarpets. Physical Chemistry Chemical Physics, 2009, 11, 9537.	1.3	24
41	Reconciling Slip Measurements in Symmetric and Asymmetric Systems. Langmuir, 2012, 28, 7768-7774.	1.6	24
42	Effect of Pore Size, Lubricant Viscosity, and Distribution on the Slippery Properties of Infused Cement Surfaces. Journal of Physical Chemistry C, 2019, 123, 2987-2995.	1.5	24
43	Interplay between Dewetting and Layer Inversion in Poly(4-vinylpyridine)/Polystyrene Bilayers. Langmuir, 2010, 26, 15989-15999.	1.6	22
44	Boundary flow on end-grafted PEG brushes. Soft Matter, 2016, 12, 1906-1914.	1.2	22
45	Morphological Characterization of H Aggregates in Langmuirâ´'Blodgett Films of Pyridiniumâ´'Dicyanomethanide Dyes. Langmuir, 1999, 15, 2149-2151.	1.6	21
46	Correlated dewetting patterns in thin polystyrene films. Journal of Physics Condensed Matter, 2003, 15, S421-S426.	0.7	21
47	Reliable Measurements of Interfacial Slip by Colloid Probe Atomic Force Microscopy. I. Mathematical Modeling. Langmuir, 2011, 27, 6701-6711.	1.6	21
48	"The Good, the Bad, and the Slippery†A Tale of Three Solvents in Polymer Film Dewetting. Macromolecules, 2016, 49, 6590-6598.	2.2	21
49	An experimental study of interactions between droplets and a nonwetting microfluidic capillary. Faraday Discussions, 2010, 146, 233.	1.6	20
50	Micropatterned substrates made by polymer bilayer dewetting and collagen nanoscale assembly support endothelial cell adhesion. Soft Matter, 2012, 8, 9996.	1.2	20
51	Rapid photochromic nanopatterns from block copolymers. Soft Matter, 2010, 6, 909-914.	1.2	19
52	Effect of repeated immersions and contamination on plastron stability in superhydrophobic surfaces. Physics of Fluids, 2019, 31, .	1.6	19
53	The mechanism of the spontaneous detonation of ammonium nitrate in reactive grounds. Journal of Environmental Chemical Engineering, 2018, 6, 281-288.	3.3	18
54	Patterned chemisorption of proteins by thin polymer film dewetting. Soft Matter, 2013, 9, 2598.	1.2	17

#	Article	IF	Citations
55	Protein Micropatterns by PEG Grafting on Dewetted PLGA Films. Langmuir, 2014, 30, 11714-11722.	1.6	17
56	Large Effective Slip on Lubricated Surfaces Measured with Colloidal Probe AFM. Langmuir, 2020, 36, 6033-6040.	1.6	17
57	Interfacial Flow of Simple Liquids on Polymer Brushes: Effect of Solvent Quality and Grafting Density. Macromolecules, 2012, 45, 6241-6252.	2.2	12
58	Premature detonation of an NH4NO3 emulsion in reactive ground. Journal of Hazardous Materials, 2015, 283, 314-320.	6.5	12
59	Chain Collapse and Interfacial Slip of Polystyrene Films in Good/Nonsolvent Vapor Mixtures. Macromolecules, 2016, 49, 1344-1352.	2.2	12
60	Influence of long-range forces and capillarity on the function of underwater superoleophobic wrinkled surfaces. Soft Matter, 2018, 14, 6627-6634.	1.2	12
61	Fabrication of Biomimetic Micropatterned Surfaces by Sol–Gel Dewetting. Advanced Materials Interfaces, 2019, 6, 1801629.	1.9	12
62	Quantification of Nucleation Site Density as a Function of Surface Wettability on Smooth Surfaces. Advanced Materials Interfaces, 2022, 9, .	1.9	12
63	Competition between Dewetting and Cross-Linking in Poly(<i>N</i> -vinylpyrrolidone)/Polystyrene Bilayer Films. Langmuir, 2011, 27, 14207-14217.	1.6	10
64	Halogen-bond driven self-assembly of perfluorocarbon monolayers on silicon nitride. Journal of Materials Chemistry A, 2019, 7, 24445-24453.	5. 2	10
65	Self-assembled porphyrin microrods and observation of structure-induced iridescence. Journal of Materials Chemistry, 2010, 20, 2310.	6.7	9
66	Tunable Nanopatterns via the Constrained Dewetting of Polymer Brushes. Macromolecules, 2013, 46, 6326-6335.	2.2	9
67	Aligned Droplet Patterns by Dewetting of Polymer Bilayers. Macromolecules, 2018, 51, 5485-5493.	2.2	9
68	Pressure Drop Measurements in Microfluidic Devices: A Review on the Accurate Quantification of Interfacial Slip. Advanced Materials Interfaces, 2022, 9, .	1.9	9
69	Ultralow surface energy self-assembled monolayers of iodo-perfluorinated alkanes on silica driven by halogen bonding. Nanoscale, 2019, 11, 2401-2411.	2.8	8
70	Enhancing Spontaneous Droplet Motion on Structured Surfaces with Tailored Wedge Design. Advanced Materials Interfaces, 2021, 8, 2000520.	1.9	8
71	Design Optimization of Perfluorinated Liquidâ€Infused Surfaces for Bloodâ€Contacting Applications. Advanced Materials Interfaces, 2022, 9, .	1.9	8
72	Robust grafting of PEG-methacrylate brushes from polymeric coatings. Polymer, 2013, 54, 5490-5498.	1.8	7

#	Article	IF	CITATIONS
73	High Glass Transition Temperature Fluoropolymers for Hydrophobic Surface Coatings via RAFT Copolymerization. Australian Journal of Chemistry, 2016, 69, 725.	0.5	7
74	Mechanical properties of Ropaque hollow nanoparticles. Polymer, 2017, 131, 10-16.	1.8	7
75	Soft–hard Janus nanoparticles for polymer encapsulation of solid particulate. Polymer Chemistry, 2020, 11, 5610-5618.	1.9	6
76	On the Superhydrophobic Properties of Crystallized Stearic Acid. Australian Journal of Chemistry, 2010, 63, 525.	0.5	5
77	Guiding the Dewetting of Thin Polymer Films by Colloidal Imprinting. Advanced Materials Interfaces, 2015, 2, 1500068.	1.9	5
78	Control of nanoparticle formation using the constrained dewetting of polymer brushes. Nanoscale, 2015, 7, 2894-2899.	2.8	5
79	Ultra-thin patchy polymer-coated graphene oxide as a novel anticancer drug carrier. Polymer Chemistry, 2021, 12, 92-104.	1.9	5
80	Antifouling Properties of Liquidâ€Infused Riblets Fabricated by Direct Contactless Microfabrication. Advanced Engineering Materials, 2021, 23, .	1.6	5
81	Convergent evolution of skin surface microarchitecture and increased skin hydrophobicity in semi-aquatic anole lizards. Journal of Experimental Biology, 2021, 224, .	0.8	5
82	Focused ion beam processing and engineering of devices in self-assembled supramolecular structures. Nanotechnology, 2009, 20, 485301.	1.3	4
83	Waterborne, all-polymeric, colloidal â€~raspberry' particles with controllable hydrophobicity and water droplet adhesion properties. Thin Solid Films, 2016, 603, 69-74.	0.8	4
84	Receding Contact Line Motion on Nanopatterned and Micropatterned Polymer Surfaces. Langmuir, 2017, 33, 12602-12608.	1.6	4
85	Safer emulsion explosives resulting from NOx inhibition. Chemical Engineering Journal, 2021, 403, 125713.	6.6	4
86	Chemical Curiosity on Campus: An Undergraduate Project on the Structure and Wettability of Natural Surfaces. Journal of Chemical Education, 2019, 96, 1998-2002.	1.1	3
87	Synthesis and Applications of Polymeric Janus Nanoparticles. , 2017, , 31-68.		2
88	Host–guest interactions of catechol and 4-ethylcatechol with surface-immobilized blue-box molecules. Journal of Materials Chemistry A, 2019, 7, 12713-12722.	5.2	1
89	Design Optimization of Perfluorinated Liquidâ€Infused Surfaces for Bloodâ€Contacting Applications (Adv.) Tj ETÇ)q1,1 0.78	34314 rgBT /(
90	Micropatterning of proteins using dewetting., 2006,,.		O

#	Article	IF	Citations
91	Long self-assembled organic molecular optical wires. , 2008, , .		O
92	Processing waveguide photonic components into self-assembled organic films. , 2009, , .		0
93	Supramolecular porphyrin wires and post-processing. , 2009, , .		O
94	Colloidal Crystals: Guiding the Dewetting of Thin Polymer Films by Colloidal Imprinting (Adv. Mater.) Tj ETQq0 0	0 rgBT /O	verlock 10 Tf
95	Sol-Gel Dewetting: Fabrication of Biomimetic Micropatterned Surfaces by Sol-Gel Dewetting (Adv.) Tj ETQq1 1 ().784314 i 1.9	rgBT/Overlock
96	Droplet Transport: Enhancing Spontaneous Droplet Motion on Structured Surfaces with Tailored Wedge Design (Adv. Mater. Interfaces 2/2021). Advanced Materials Interfaces, 2021, 8, 2170010.	1.9	0
97	Pressure Drop Measurements in Microfluidic Devices: A Review on the Accurate Quantification of Interfacial Slip (Adv. Mater. Interfaces 5/2022). Advanced Materials Interfaces, 2022, 9, .	1.9	O