
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5061405/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genome-wide association study identifies three loci associated with melanoma risk. Nature Genetics, 2009, 41, 920-925.	9.4	422
2	High-risk Melanoma Susceptibility Genes and Pancreatic Cancer, Neural System Tumors, and Uveal Melanoma across GenoMEL. Cancer Research, 2006, 66, 9818-9828.	0.4	373
3	Features associated with germline CDKN2A mutations: a GenoMEL study of melanoma-prone families from three continents. Journal of Medical Genetics, 2006, 44, 99-106.	1.5	350
4	Common variation in KITLG and at 5q31.3 predisposes to testicular germ cell cancer. Nature Genetics, 2009, 41, 811-815.	9.4	319
5	Tumor-Infiltrating Lymphocyte Grade in Primary Melanomas Is Independently Associated With Melanoma-Specific Survival in the Population-Based Genes, Environment and Melanoma Study. Journal of Clinical Oncology, 2013, 31, 4252-4259.	0.8	232
6	Genome-wide association study identifies three new melanoma susceptibility loci. Nature Genetics, 2011, 43, 1108-1113.	9.4	230
7	Genome-wide meta-analysis identifies five new susceptibility loci for cutaneous malignant melanoma. Nature Genetics, 2015, 47, 987-995.	9.4	218
8	The Y Deletion gr/gr and Susceptibility to Testicular Germ Cell Tumor. American Journal of Human Genetics, 2005, 77, 1034-1043.	2.6	197
9	A Polymorphism in the Agouti Signaling Protein Gene Is Associated with Human Pigmentation. American Journal of Human Genetics, 2002, 70, 770-775.	2.6	168
10	Association Between <i>NRAS</i> and <i>BRAF</i> Mutational Status and Melanoma-Specific Survival Among Patients With Higher-Risk Primary Melanoma. JAMA Oncology, 2015, 1, 359.	3.4	164
11	Exploring the prognostic value of the neutrophil-to-lymphocyte ratio in cancer. Scientific Reports, 2019, 9, 19673.	1.6	162
12	Meta-analysis identifies four new loci associated with testicular germ cell tumor. Nature Genetics, 2013, 45, 680-685.	9.4	154
13	MC1R, ASIP, and DNA Repair in Sporadic and Familial Melanoma in a Mediterranean Population. Journal of the National Cancer Institute, 2005, 97, 998-1007.	3.0	150
14	Comparison of Clinicopathologic Features and Survival of Histopathologically Amelanotic and Pigmented Melanomas. JAMA Dermatology, 2014, 150, 1306.	2.0	142
15	Genome-wide association study identifies a new melanoma susceptibility locus at 1q21.3. Nature Genetics, 2011, 43, 1114-1118.	9.4	140
16	Genome-wide association meta-analyses combining multiple risk phenotypes provide insights into the genetic architecture of cutaneous melanoma susceptibility. Nature Genetics, 2020, 52, 494-504.	9.4	138
17	Chromosome 3 Status Combined With <i>BAP1</i> and <i>EIF1AX</i> Mutation Profiles Are Associated With Metastasis in Uveal Melanoma. , 2014, 55, 5160.		130
18	A second independent locus within DMRT1 is associated with testicular germ cell tumor susceptibility. Human Molecular Genetics, 2011, 20, 3109-3117.	1.4	124

#	Article	IF	CITATIONS
19	Genome-wide association study of kidney function decline in individuals of European descent. Kidney International, 2015, 87, 1017-1029.	2.6	113
20	A variant in FTO shows association with melanoma risk not due to BMI. Nature Genetics, 2013, 45, 428-432.	9.4	111
21	The Effect on Melanoma Risk of Genes Previously Associated With Telomere Length. Journal of the National Cancer Institute, 2014, 106, .	3.0	109
22	Population-Based Study of Natural Variation in the Melanocortin-1 Receptor Gene and Melanoma. Cancer Research, 2006, 66, 9330-9337.	0.4	108
23	Ambient UV, personal sun exposure and risk of multiple primary melanomas. Cancer Causes and Control, 2007, 18, 295-304.	0.8	106
24	The Prevalence of CDKN2A Germ-Line Mutations and Relative Risk for Cutaneous Malignant Melanoma: An International Population-Based Study. Cancer Epidemiology Biomarkers and Prevention, 2006, 15, 1520-1525.	1.1	105
25	Meta-analysis of five genome-wide association studies identifies multiple new loci associated with testicular germ cell tumor. Nature Genetics, 2017, 49, 1141-1147.	9.4	105
26	Melanocytic Nevi, Nevus Genes, and Melanoma Risk in a Large Case-Control Study in the United Kingdom. Cancer Epidemiology Biomarkers and Prevention, 2010, 19, 2043-2054.	1.1	102
27	<i>MC1R</i> variants increased the risk of sporadic cutaneous melanoma in darkerâ€pigmented <scp>C</scp> aucasians: A pooledâ€analysis from the Mâ€SKIP project. International Journal of Cancer, 2015, 136, 618-631.	2.3	92
28	Does <i>MC1R</i> genotype convey information about melanoma risk beyond risk phenotypes?. Cancer, 2010, 116, 2416-2428.	2.0	88
29	A pooled analysis of melanocytic nevus phenotype and the risk of cutaneous melanoma at different latitudes. International Journal of Cancer, 2009, 124, 420-428.	2.3	84
30	Genome-wide association study in 176,678 Europeans reveals genetic loci for tanning response to sun exposure. Nature Communications, 2018, 9, 1684.	5.8	80
31	Assessment of polygenic architecture and risk prediction based on common variants across fourteen cancers. Nature Communications, 2020, 11, 3353.	5.8	75
32	Inherited variants in the <i>MC1R</i> gene and survival from cutaneous melanoma: a BioGenoMEL study. Pigment Cell and Melanoma Research, 2012, 25, 384-394.	1.5	61
33	Vitamin D receptor polymorphisms in patients with cutaneous melanoma. International Journal of Cancer, 2012, 130, 405-418.	2.3	61
34	Testicular germ cell tumor susceptibility associated with the UCK2 locus on chromosome 1q23. Human Molecular Genetics, 2013, 22, 2748-2753.	1.4	59
35	MC1R variants as melanoma risk factors independent of at-risk phenotypic characteristics: a pooled analysis from the M-SKIP project. Cancer Management and Research, 2018, Volume 10, 1143-1154.	0.9	57
36	Mammography and Papanicolaou Smear Use by Elderly Poor Black Women. Journal of the American Geriatrics Society, 1992, 40, 1001-1007.	1.3	54

#	Article	IF	CITATIONS
37	Assessing the Incremental Contribution of Common Genomic Variants to Melanoma Risk Prediction in Two Population-Based Studies. Journal of Investigative Dermatology, 2018, 138, 2617-2624.	0.3	52
38	CDKN2A Germline Mutations in Individuals with Cutaneous Malignant Melanoma. Journal of Investigative Dermatology, 2007, 127, 1234-1243.	0.3	50
39	Associations of Cumulative Sun Exposure and Phenotypic Characteristics with Histologic Solar Elastosis. Cancer Epidemiology Biomarkers and Prevention, 2010, 19, 2932-2941.	1.1	45
40	Clinicopathologic Features of Incident and Subsequent Tumors in Patients with Multiple Primary Cutaneous Melanomas. Annals of Surgical Oncology, 2012, 19, 1024-1033.	0.7	45
41	Prevalence and predictors of germline CDKN2A mutations for melanoma cases from Australia, Spain and the United Kingdom. Hereditary Cancer in Clinical Practice, 2014, 12, 20.	0.6	45
42	A Pilot Randomized Controlled Trial of the Feasibility, Acceptability, and Impact of Giving Information on Personalized Genomic Risk of Melanoma to the Public. Cancer Epidemiology Biomarkers and Prevention, 2017, 26, 212-221.	1.1	44
43	Association of Inherited Pathogenic Variants in Checkpoint Kinase 2 (<i>CHEK2</i>) With Susceptibility to Testicular Germ Cell Tumors. JAMA Oncology, 2019, 5, 514.	3.4	43
44	Identification of a melanoma susceptibility locus and somatic mutation in <i>TET2</i> . Carcinogenesis, 2014, 35, 2097-2101.	1.3	41
45	Higher plasma CXCL12 levels predict incident myocardial infarction and death in chronic kidney disease: findings from the Chronic Renal Insufficiency Cohort study. European Heart Journal, 2014, 35, 2115-2122.	1.0	41
46	Inherited Genetic Variants Associated with Occurrence of Multiple Primary Melanoma. Cancer Epidemiology Biomarkers and Prevention, 2015, 24, 992-997.	1.1	36
47	Assessment of polymorphic variants in the melanocortin-1 receptor gene with cutaneous pigmentation using an evolutionary approach. Cancer Epidemiology Biomarkers and Prevention, 2004, 13, 808-19.	1.1	35
48	Melanoma Genetic Testing, Counseling, and Adherence to Skin Cancer Prevention and Detection Behaviors. Cancer Epidemiology Biomarkers and Prevention, 2013, 22, 607-614.	1.1	34
49	Survival for Patients With Single and Multiple Primary Melanomas. JAMA Dermatology, 2013, 149, 921.	2.0	33
50	Pathway-based analysis of GWAs data identifies association of sex determination genes with susceptibility to testicular germ cell tumors. Human Molecular Genetics, 2014, 23, 6061-6068.	1.4	28
51	Association of Interferon Regulatory Factor-4 Polymorphism rs12203592 With Divergent Melanoma Pathways. Journal of the National Cancer Institute, 2016, 108, djw004.	3.0	28
52	Inherited variation at <i>MC1R</i> and <i>ASIP</i> and association with melanomaâ€specific survival. International Journal of Cancer, 2015, 136, 2659-2667.	2.3	27
53	Identification of 22 susceptibility loci associated with testicular germ cell tumors. Nature Communications, 2021, 12, 4487.	5.8	27
54	A comparison of CDKN2A mutation detection within the Melanoma Genetics Consortium (GenoMEL). European Journal of Cancer, 2008, 44, 1269-1274.	1.3	26

#	Article	IF	CITATIONS
55	Sun Exposure and Melanoma Survival: A GEM Study. Cancer Epidemiology Biomarkers and Prevention, 2014, 23, 2145-2152.	1.1	26
56	Inherited Variation at MC1R and Histological Characteristics of Primary Melanoma. PLoS ONE, 2015, 10, e0119920.	1.1	22
5 7	Impact of personal genomic risk information on melanoma prevention behaviors and psychological outcomes: a randomized controlled trial. Genetics in Medicine, 2021, 23, 2394-2403.	1.1	22
58	Histologic features of melanoma associated with CDKN2A genotype. Journal of the American Academy of Dermatology, 2015, 72, 496-507.e7.	0.6	19
59	Association of Incident Amelanotic Melanoma With Phenotypic Characteristics, <i>MC1R</i> Status, and Prior Amelanotic Melanoma. JAMA Dermatology, 2017, 153, 1026.	2.0	19
60	The melanoma genomics managing your risk study: A protocol for a randomized controlled trial evaluating the impact of personal genomic risk information on skin cancer prevention behaviors. Contemporary Clinical Trials, 2018, 70, 106-116.	0.8	19
61	Germline Variation at CDKN2A and Associations with Nevus Phenotypes amongÂMembers of Melanoma Families. Journal of Investigative Dermatology, 2017, 137, 2606-2612.	0.3	18
62	Marshaling the Translational Potential of <i>MC1R</i> for Precision Risk Assessment of Melanoma. Cancer Prevention Research, 2018, 11, 121-124.	0.7	18
63	Perceptions of genetic research and testing among members of families with an increased risk of malignant melanoma. European Journal of Cancer, 2012, 48, 3052-3062.	1.3	17
64	Estimating CDKN2A mutation carrier probability among global familial melanoma cases using GenoMELPREDICT. Journal of the American Academy of Dermatology, 2019, 81, 386-394.	0.6	17
65	Association of Melanocortin-1 Receptor Variants with Pigmentary Traits in Humans: AÂPooled Analysis from the M-Skip Project. Journal of Investigative Dermatology, 2016, 136, 1914-1917.	0.3	16
66	The Association of <i>MUC16</i> Mutation with Tumor Mutation Burden and Its Prognostic Implications in Cutaneous Melanoma. Cancer Epidemiology Biomarkers and Prevention, 2020, 29, 1792-1799.	1.1	15
67	Functional melanomaâ€risk variant <i> <scp>IRF</scp> 4 </i> rs12203592 associated with Breslow thickness: a pooled international study of primary melanomas. British Journal of Dermatology, 2017, 177, e180-e182.	1.4	14
68	Sexual and Gender Minority Issues Across NCCN Guidelines: Results From a National Survey. Journal of the National Comprehensive Cancer Network: JNCCN, 2017, 15, 1379-1382.	2.3	14
69	Metabolomics of primary cutaneous melanoma and matched adjacent extratumoral microenvironment. PLoS ONE, 2020, 15, e0240849.	1.1	14
70	Germ-line DICER1 mutations do not make a major contribution to the etiology of familial testicular germ cell tumours. BMC Research Notes, 2013, 6, 127.	0.6	13
71	Phenotypic and Histopathological Tumor Characteristics According to CDKN2A Mutation Status among Affected Members ofAMelanoma Families. Journal of Investigative Dermatology, 2016, 136, 1066-1069.	0.3	13
72	The interaction between vitamin D receptor polymorphisms and sun exposure around time of diagnosis influences melanoma survival. Pigment Cell and Melanoma Research, 2018, 31, 287-296.	1.5	13

#	Article	IF	CITATIONS
73	Risk factors for melanoma by anatomical site: an evaluation of aetiological heterogeneity*. British Journal of Dermatology, 2021, 184, 1085-1093.	1.4	13
74	Melanocortin-1 receptor, skin cancer and phenotypic characteristics (M-SKIP) project: study design and methods for pooling results of genetic epidemiological studies. BMC Medical Research Methodology, 2012, 12, 116.	1.4	12
75	Nevus count associations with pigmentary phenotype, histopathological melanoma characteristics and survival from melanoma. International Journal of Cancer, 2016, 139, 1217-1222.	2.3	11
76	Associations of MC1R Genotype and Patient Phenotypes with BRAF and NRAS Mutations in Melanoma. Journal of Investigative Dermatology, 2017, 137, 2588-2598.	0.3	11
77	A Randomized Trial of Precision Prevention Materials to Improve Primary and Secondary Melanoma Prevention Activities among Individuals with Limited Melanoma Risk Phenotypes. Cancers, 2021, 13, 3143.	1.7	11
78	Recruiting and Training Leadership through Professional Societies: A Report from the American Society of Preventive Oncology Junior Members Interest Group. Cancer Epidemiology Biomarkers and Prevention, 2006, 15, 1422-1424.	1.1	10
79	Associations of pigmentary and naevus phenotype with melanoma risk in two populations with comparable ancestry but contrasting levels of ambient sun exposure. Journal of the European Academy of Dermatology and Venereology, 2019, 33, 1874-1885.	1.3	10
80	Inherited Genetic Variants Associated with Melanoma BRAF/NRAS Subtypes. Journal of Investigative Dermatology, 2018, 138, 2398-2404.	0.3	9
81	MC1R variants and associations with pigmentation characteristics and genetic ancestry in a Hispanic, predominately Puerto Rican, population. Scientific Reports, 2020, 10, 7303.	1.6	9
82	A Randomized Clinical Trial of Precision Prevention Materials Incorporating <i>MC1R</i> Genetic Risk to Improve Skin Cancer Prevention Activities Among Hispanics. Cancer Research Communications, 2022, 2, 28-38.	0.7	9
83	Non-del(5q) myelodysplastic syndromes–associated loci detected by SNP-array genome-wide association meta-analysis. Blood Advances, 2019, 3, 3579-3589.	2.5	7
84	No prognostic value added by vitamin D pathway SNPs to current prognostic system for melanoma survival. PLoS ONE, 2017, 12, e0174234.	1.1	7
85	Association of Known Melanoma Risk Factors with Primary Melanoma of the Scalp and Neck. Cancer Epidemiology Biomarkers and Prevention, 2020, 29, 2203-2210.	1.1	6
86	Association of <i> <scp>IRF</scp> 4 </i> singleâ€nucleotide polymorphism rs12203592 with melanomaâ€specific survival. British Journal of Dermatology, 2020, 183, 163-165.	1.4	6
87	Morphologic and molecular correlates of EZH2 as a predictor of platinum resistance in high-grade ovarian serous carcinoma. BMC Cancer, 2021, 21, 714.	1.1	5
88	Birth cohort-specific trends of sun-related behaviors among individuals from an international consortium of melanoma-prone families. BMC Public Health, 2021, 21, 692.	1.2	4
89	Association Study between Polymorphisms in DNA Methylation–Related Genes and Testicular Germ Cell Tumor Risk. Cancer Epidemiology Biomarkers and Prevention, 2022, 31, 1769-1779.	1.1	4
90	<i>MC1R</i> variants in relation to naevi in melanoma cases and controls: a pooled analysis from the M‣KIP project. Journal of the European Academy of Dermatology and Venereology, 2021, 35, e135-e138.	1.3	3

#	Article	IF	CITATIONS
91	Assessment of melanoma precision prevention materials incorporating <i>MC1R</i> genetic risk information. Translational Behavioral Medicine, 2022, 12, 683-687.	1.2	3
92	Genetically Inferred Telomere Length and Testicular Germ Cell Tumor Risk. Cancer Epidemiology Biomarkers and Prevention, 2021, 30, 1275-1278.	1.1	2
93	Disease-Associated Risk Variants in <i>ANRIL</i> Are Associated with Tumor-Infiltrating Lymphocyte Presence in Primary Melanomas in the Population-Based GEM Study. Cancer Epidemiology Biomarkers and Prevention, 2021, 30, 2309-2316.	1.1	2
94	Inherited Melanoma Risk Variants Associated with Histopathologically Amelanotic Melanoma. Journal of Investigative Dermatology, 2020, 140, 918-922.e7.	0.3	1
95	Differences in Melanoma Between Canada and New South Wales, Australia: A Population-Based Genes, Environment, and Melanoma (GEM) Study. JID Innovations, 2021, 1, 100002.	1.2	1
96	Association of Melanoma-Risk Variants with Primary Melanoma Tumor Prognostic Characteristics and Melanoma-Specific Survival in the GEM Study. Current Oncology, 2021, 28, 4756-4771.	0.9	1
97	Retention and Evaluation of Precision and Generic Prevention Materials for Melanoma: A Qualitative Study Comparing Young Adults and Adults. Cancer Prevention Research, 2022, 15, 533-542.	0.7	1
98	Assessment of skin cancer precision prevention materials among Hispanics in Florida and Puerto Rico. Patient Education and Counseling, 2022, 105, 3143-3150.	1.0	1
99	Relationship of Chromosome Arm 10q Variants toÂOccurrence of Multiple Primary Melanoma in theÂPopulation-Based Genes, Environment, andÂMelanoma (GEM) Study. Journal of Investigative Dermatology, 2019, 139, 1410-1412.	0.3	0
100	Big Returns on Investment. Cancer Epidemiology Biomarkers and Prevention, 2019, 28, 1271-1272.	1.1	0
101	Lack of pathogenic germline DICER1 variants in males with testicular germ-cell tumors. Cancer Genetics, 2020, 248-249, 49-56.	0.2	0
102	A pilot randomised controlled trial examining the feasibility, acceptability and impact of giving information on personalised genomic risk of melanoma to the public, for motivating preventive behaviours Journal of Clinical Oncology, 2016, 34, 1556-1556.	0.8	0
103	Metabolomics of primary cutaneous melanoma and matched adjacent extratumoral microenvironment. , 2020, 15, e0240849.		0
104	Metabolomics of primary cutaneous melanoma and matched adjacent extratumoral microenvironment. , 2020, 15, e0240849.		0
105	Metabolomics of primary cutaneous melanoma and matched adjacent extratumoral microenvironment. , 2020, 15, e0240849.		0
106	Metabolomics of primary cutaneous melanoma and matched adjacent extratumoral microenvironment. , 2020, 15, e0240849.		0