List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5061297/publications.pdf Version: 2024-02-01

KADEN FALLIDS

#	Article	IF	CITATIONS
1	THEM6â€mediated reprogramming of lipid metabolism supports treatment resistance in prostate cancer. EMBO Molecular Medicine, 2022, 14, e14764.	3.3	12
2	Depth prediction of nanotags in tissue using surface enhanced spatially offset Raman scattering (SESORS). Chemical Communications, 2022, 58, 1756-1759.	2.2	13
3	Towards quantitative point of care detection using SERS lateral flow immunoassays. Analytical and Bioanalytical Chemistry, 2022, 414, 4541-4549.	1.9	16
4	Stimulated Raman scattering microscopy with spectral phasor analysis: applications in assessing drug–cell interactions. Chemical Science, 2022, 13, 3468-3476.	3.7	19
5	Analytical nanoscience. Analyst, The, 2022, 147, 765-766.	1.7	2
6	Threeâ€dimensional imaging of pharmaceutical tablets using serial sectioning and Raman chemical mapping. Journal of Raman Spectroscopy, 2022, 53, 1115-1125.	1.2	4
7	Raman Spectroscopy in Prostate Cancer: Techniques, Applications and Advancements. Cancers, 2022, 14, 1535.	1.7	18
8	Detection of a miRNA biomarker for cancer diagnosis using SERS tags and magnetic separation. Analytical Methods, 2022, 14, 1938-1945.	1.3	4
9	Evaluation of laser direct infrared imaging for rapid analysis of pharmaceutical tablets. Analytical Methods, 2022, 14, 1862-1871.	1.3	5
10	Utilizing Raman Spectroscopy as a Tool for Solid- and Solution-Phase Analysis of Metalloorganic Cage Host–Guest Complexes. Inorganic Chemistry, 2022, , .	1.9	1
11	Label-Free Imaging of Lipid Droplets in Prostate Cells Using Stimulated Raman Scattering Microscopy and Multivariate Analysis. Analytical Chemistry, 2022, 94, 8899-8908.	3.2	18
12	Tomographic Imaging and Localization of Nanoparticles in Tissue Using Surface-Enhanced Spatially Offset Raman Spectroscopy. ACS Applied Materials & Interfaces, 2022, 14, 31613-31624.	4.0	9
13	Comparison of Raman and Near-Infrared Chemical Mapping for the Analysis of Pharmaceutical Tablets. Applied Spectroscopy, 2021, 75, 178-188.	1.2	16
14	Rapid ultra-sensitive diagnosis of <i>clostridium difficile</i> infection using a SERS-based lateral flow assay. Analyst, The, 2021, 146, 4495-4505.	1.7	23
15	Surface enhanced Raman scattering for the multiplexed detection of pathogenic microorganisms: towards point-of-use applications. Analyst, The, 2021, 146, 6084-6101.	1.7	23
16	Detection of Estrogen Receptor Alpha and Assessment of Fulvestrant Activity in MCF-7 Tumor Spheroids Using Microfluidics and SERS. Analytical Chemistry, 2021, 93, 5862-5871.	3.2	25
17	Effect of glycine on aggregation of citrate-functionalised gold nanoparticles and SERS measurements. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 621, 126523.	2.3	11
18	Mitokyne: A Ratiometric Raman Probe for Mitochondrial pH. Analytical Chemistry, 2021, 93, 12786-12792.	3.2	21

#	Article	IF	CITATIONS
19	From Raman to SESORRS: moving deeper into cancer detection and treatment monitoring. Chemical Communications, 2021, 57, 12436-12451.	2.2	14
20	Raman spectroscopic analysis of skin as a diagnostic tool for Human African Trypanosomiasis. PLoS Pathogens, 2021, 17, e1010060.	2.1	7
21	Present and Future of Surface-Enhanced Raman Scattering. ACS Nano, 2020, 14, 28-117.	7.3	2,153
22	Detection of cardiovascular disease associated miR-29a using paper-based microfluidics and surface enhanced Raman scattering. Analyst, The, 2020, 145, 983-991.	1.7	39
23	Protonâ€Conductive Melaninâ€Like Fibers through Enzymatic Oxidation of a Selfâ€Assembling Peptide. Advanced Materials, 2020, 32, e2003511.	11.1	38
24	Modulation of interparticle gap for enhanced SERS sensitivity in chemically stable Ag@Au hetero-architectures. New Journal of Chemistry, 2020, 44, 13843-13851.	1.4	9
25	Dynamic pH measurements of intracellular pathways using nano-plasmonic assemblies. Analyst, The, 2020, 145, 5768-5775.	1.7	14
26	Ratiometric sensing of fluoride ions using Raman spectroscopy. Chemical Communications, 2020, 56, 14463-14466.	2.2	20
27	Characterisation of estrogen receptor alpha (ERα) expression in breast cancer cells and effect of drug treatment using targeted nanoparticles and SERS. Analyst, The, 2020, 145, 7225-7233.	1.7	9
28	2,4-dienoyl-CoA reductase regulates lipid homeostasis in treatment-resistant prostate cancer. Nature Communications, 2020, 11, 2508.	5.8	108
29	Investigation of cellular uptake mechanism of functionalised gold nanoparticles into breast cancer using SERS. Chemical Science, 2020, 11, 5819-5829.	3.7	57
30	A new class of ratiometric small molecule intracellular pH sensors for Raman microscopy. Analyst, The, 2020, 145, 5289-5298.	1.7	27
31	Surface Design for Immobilization of an Antimicrobial Peptide Mimic for Efficient Antiâ€Biofouling. Chemistry - A European Journal, 2020, 26, 5789-5793.	1.7	25
32	Surface Enhanced Raman Spectroscopy for Quantitative Analysis: Results of a Large-Scale European Multi-Instrument Interlaboratory Study. Analytical Chemistry, 2020, 92, 4053-4064.	3.2	50
33	Detection of Multiple Nitroaromatic Explosives via Formation of a Janowsky Complex and SERS. Analytical Chemistry, 2020, 92, 3253-3261.	3.2	50
34	DNA detection by SERS: hybridisation parameters and the potential for asymmetric PCR. Analyst, The, 2020, 145, 1871-1877.	1.7	24
35	Through tissue imaging of a live breast cancer tumour model using handheld surface enhanced spatially offset resonance Raman spectroscopy (SESORRS). Chemical Science, 2018, 9, 3788-3792.	3.7	45
36	Recent developments in quantitative SERS: Moving towards absolute quantification. TrAC - Trends in Analytical Chemistry, 2018, 102, 359-368.	5.8	127

KAREN FAULDS

#	Article	IF	CITATIONS
37	Tracking intracellular uptake and localisation of alkyne tagged fatty acids using Raman spectroscopy. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 197, 30-36.	2.0	29
38	Ratiometric analysis using Raman spectroscopy as a powerful predictor of structural properties of fatty acids. Royal Society Open Science, 2018, 5, 181483.	1.1	43
39	<i>In vivo</i> multiplex molecular imaging of vascular inflammation using surface-enhanced Raman spectroscopy. Theranostics, 2018, 8, 6195-6209.	4.6	56
40	Towards establishing a minimal nanoparticle concentration for applications involving surface enhanced spatially offset resonance Raman spectroscopy (SESORRS) <i>in vivo</i> . Analyst, The, 2018, 143, 5358-5363.	1.7	10
41	Synergistic electrodeposition of bilayer films and analysis by Raman spectroscopy. Beilstein Journal of Organic Chemistry, 2018, 14, 2186-2189.	1.3	1
42	Surface enhanced resonance Raman spectroscopy (SERRS) for probing through plastic and tissue barriers using a handheld spectrometer. Analyst, The, 2018, 143, 5965-5973.	1.7	23
43	Ratiometric Raman imaging reveals the new anti-cancer potential of lipid targeting drugs. Chemical Science, 2018, 9, 6935-6943.	3.7	19
44	Multiplex imaging of live breast cancer tumour models through tissue using handheld surface enhanced spatially offset resonance Raman spectroscopy (SESORRS). Chemical Communications, 2018, 54, 8530-8533.	2.2	26
45	Introducing 12 new dyes for use with oligonucleotide functionalised silver nanoparticles for DNA detection with SERS. RSC Advances, 2018, 8, 17685-17693.	1.7	5
46	Detection of cortisol in serum using quantitative resonance Raman spectroscopy. Analytical Methods, 2017, 9, 1589-1594.	1.3	15
47	Bioanalytical Measurements Enabled by Surface-Enhanced Raman Scattering (SERS) Probes. Annual Review of Analytical Chemistry, 2017, 10, 415-437.	2.8	71
48	Raman spectroscopy and regenerative medicine: a review. Npj Regenerative Medicine, 2017, 2, 12.	2.5	147
49	Au@Ag SERRS tags coupled to a lateral flow immunoassay for the sensitive detection of pneumolysin. Nanoscale, 2017, 9, 2051-2058.	2.8	91
50	Through barrier detection of ethanol using handheld Raman spectroscopy—Conventional Raman versus spatially offset Raman spectroscopy (SORS). Journal of Raman Spectroscopy, 2017, 48, 1828-1838.	1.2	18
51	SERS Detection of Multiple Antimicrobial-Resistant Pathogens Using Nanosensors. Analytical Chemistry, 2017, 89, 12666-12673.	3.2	170
52	High Figure of Merit (FOM) of Bragg Modes in Au oated Nanodisk Arrays for Plasmonic Sensing. Small, 2017, 13, 1700908.	5.2	21
53	Surface-enhanced Raman spectroscopy for in vivo biosensing. Nature Reviews Chemistry, 2017, 1, .	13.8	325
54	Organoimido-Polyoxometalate Nonlinear Optical Chromophores: A Structural, Spectroscopic, and Computational Study. Inorganic Chemistry, 2017, 56, 10181-10194.	1.9	31

#	Article	IF	CITATIONS
55	Sensitive SERS nanotags for use with a hand-held 1064 nm Raman spectrometer. Royal Society Open Science, 2017, 4, 170422.	1.1	13
56	Analytical SERS: general discussion. Faraday Discussions, 2017, 205, 561-600.	1.6	14
57	Resonance Raman detection of antioxidants using an iron oxide nanoparticle catalysed decolourisation assay. Analyst, The, 2017, 142, 4715-4720.	1.7	7
58	Surface-Enhanced, Spatially Offset Raman Spectroscopy (SESORS) in Tissue Analogues. ACS Applied Materials & Interfaces, 2017, 9, 25488-25494.	4.0	40
59	A novel nanozyme assay utilising the catalytic activity of silver nanoparticles and SERRS. Analyst, The, 2017, 142, 2484-2490.	1.7	46
60	Investigation of Silver Nanoparticle Assembly Following Hybridization with Different Lengths of DNA. Particle and Particle Systems Characterization, 2016, 33, 404-411.	1.2	3
61	Analysis of Photothermal Release of Oligonucleotides from Hollow Gold Nanospheres by Surface-Enhanced Raman Scattering. Journal of Physical Chemistry C, 2016, 120, 20677-20683.	1.5	6
62	From synthetic DNA to PCR product: detection of fungal infections using SERS. Faraday Discussions, 2016, 187, 461-472.	1.6	15
63	Silver colloids as plasmonic substrates for direct label-free surface-enhanced Raman scattering analysis of DNA. Analyst, The, 2016, 141, 5170-5180.	1.7	43
64	Elucidation of the bonding of a near infrared dye to hollow gold nanospheres – a chalcogen tripod. Chemical Science, 2016, 7, 5160-5170.	3.7	19
65	Detection of potentially toxic metals by SERS using salen complexes. Analyst, The, 2016, 141, 5857-5863.	1.7	16
66	Thermoresponsive Polymer Micropatterns Fabricated by Dip-Pen Nanolithography for a Highly Controllable Substrate with Potential Cellular Applications. ACS Applied Materials & Interfaces, 2016, 8, 24844-24852.	4.0	10
67	Sensitive SERS nanotags for use with 1550 nm (retina-safe) laser excitation. Analyst, The, 2016, 141, 5062-5065.	1.7	19
68	Mixed-monolayer glyconanoparticles for the detection of cholera toxin by surface enhanced Raman spectroscopy. Nanoscale Horizons, 2016, 1, 60-63.	4.1	18
69	Fundamental developments in clinical infrared and Raman spectroscopy. Chemical Society Reviews, 2016, 45, 1792-1793.	18.7	21
70	Multiplex in vitro detection using SERS. Chemical Society Reviews, 2016, 45, 1901-1918.	18.7	280
71	Preferential Attachment of Specific Fluorescent Dyes and Dye Labeled DNA Sequences in a Surface Enhanced Raman Scattering Multiplex. Analytical Chemistry, 2016, 88, 1147-1153.	3.2	16
72	Extreme red shifted SERS nanotags. Chemical Science, 2015, 6, 2302-2306.	3.7	47

#	Article	IF	CITATIONS
73	Functionalisation of hollow gold nanospheres for use as stable, red-shifted SERS nanotags. Nanoscale, 2015, 7, 6075-6082.	2.8	23
74	Through-space transfer of chiral information mediated by a plasmonic nanomaterial. Nature Chemistry, 2015, 7, 591-596.	6.6	105
75	Bacterial meningitis pathogens identified in clinical samples using a SERS DNA detection assay. Analytical Methods, 2015, 7, 1269-1272.	1.3	18
76	Laser induced SERS switching using plasmonic heating of PNIPAM coated HGNs. Chemical Communications, 2015, 51, 8138-8141.	2.2	8
77	Determination of metal ion concentrations by SERS using 2,2′-bipyridyl complexes. Analyst, The, 2015, 140, 6538-6543.	1.7	12
78	1064 nm SERS of NIR active hollow gold nanotags. Physical Chemistry Chemical Physics, 2015, 17, 1980-1986.	1.3	35
79	Quantification of Functionalised Gold Nanoparticle-Targeted Knockdown of Gene Expression in HeLa Cells. PLoS ONE, 2014, 9, e99458.	1.1	8
80	Synthesis of size tunable monodispersed silver nanoparticles and the effect of size on SERS enhancement. Vibrational Spectroscopy, 2014, 71, 41-46.	1.2	41
81	Silver and magnetic nanoparticles for sensitive DNA detection by SERS. Chemical Communications, 2014, 50, 12907-12910.	2.2	62
82	Simultaneous detection and quantification of three bacterial meningitis pathogens by SERS. Chemical Science, 2014, 5, 1030-1040.	3.7	134
83	Qualitative SERS analysis of G-quadruplex DNAs using selective stabilising ligands. Analyst, The, 2014, 139, 4458-4465.	1.7	11
84	Interaction of fluorescent dyes with DNA and spermine using fluorescence spectroscopy. Analyst, The, 2014, 139, 3735-3743.	1.7	12
85	Surface enhanced Raman spectroscopy (SERS): Potential applications for disease detection and treatment. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2014, 21, 40-53.	5.6	75
86	Confocal SERS Mapping of Glycan Expression for the Identification of Cancerous Cells. Analytical Chemistry, 2014, 86, 4775-4782.	3.2	44
87	3D optical imaging of multiple SERS nanotags in cells. Chemical Science, 2013, 4, 3566.	3.7	57
88	An investigation into the simultaneous enzymatic and SERRS properties of silver nanoparticles. Analyst, The, 2013, 138, 6347.	1.7	35
89	Resonance Raman scattering of catalytic beacons for DNA detection. Chemical Communications, 2013, 49, 3206.	2.2	9
90	Synthesis and NIR optical properties of hollow gold nanospheres with LSPR greater than one micrometer. Nanoscale, 2013, 5, 765-771.	2.8	44

#	Article	IF	CITATIONS
91	SERS Primers and Their Mode of Action for Pathogen DNA Detection. Analytical Chemistry, 2013, 85, 1408-1414.	3.2	46
92	Formation of SERS active nanoparticle assemblies via specific carbohydrate–protein interactions. Chemical Communications, 2013, 49, 30-32.	2.2	40
93	Recent developments and future directions in SERS for bioanalysis. Physical Chemistry Chemical Physics, 2013, 15, 5312.	1.3	107
94	Improving the understanding of oligonucleotide–nanoparticle conjugates using DNA-binding fluorophores. Nanoscale, 2013, 5, 4166.	2.8	3
95	Immunoassay Arrays Fabricated by Dip-Pen Nanolithography with Resonance Raman Detection. Analytical Chemistry, 2013, 85, 5617-5621.	3.2	12
96	Analysis of intracellular enzyme activity by surface enhanced Raman scattering. Analyst, The, 2013, 138, 6331.	1.7	30
97	Nanoparticle assembly for sensitive DNA detection using SERRS. Biochemical Society Transactions, 2012, 40, 597-602.	1.6	4
98	Nanosensing protein allostery using a bivalent mouse double minute two (MDM2) assay. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 8073-8078.	3.3	22
99	Functionalisation, Characterization, and Application of Metal Nanoparticles for Bioanalysis. ACS Symposium Series, 2012, , 33-58.	0.5	0
100	Enhancing the SERS properties of nanoworms by matrix formation. Analyst, The, 2012, 137, 2297.	1.7	6
101	Surface-Enhanced Raman Scattering Investigation of Hollow Gold Nanospheres. Journal of Physical Chemistry C, 2012, 116, 8338-8342.	1.5	41
102	Design Consideration for Surface-Enhanced (Resonance) Raman Scattering Nanotag Cores. Journal of Physical Chemistry C, 2012, 116, 2677-2682.	1.5	9
103	Directed Assembly of DNA-Functionalized Gold Nanoparticles Using Pyrrole–Imidazole Polyamides. Journal of the American Chemical Society, 2012, 134, 8356-8359.	6.6	46
104	Growth and surface-enhanced Raman scattering of Ag nanoparticle assembly in agarose gel. Measurement Science and Technology, 2012, 23, 084006.	1.4	32
105	Detection of Inflammation in Vivo by Surface-Enhanced Raman Scattering Provides Higher Sensitivity Than Conventional Fluorescence Imaging. Analytical Chemistry, 2012, 84, 5968-5975.	3.2	62
106	CHAPTER 11. Nucleic Acid–Nanoparticle Conjugate Sensors for Use with Surface Enhanced Resonance Raman Scattering (SERRS). RSC Biomolecular Sciences, 2012, , 258-277.	0.4	0
107	Detection of SERS active labelled DNA based on surface affinity to silver nanoparticles. Analyst, The, 2012, 137, 2063.	1.7	41
108	Positively charged silver nanoparticles and their effect on surface-enhanced Raman scattering of dye-labelled oligonucleotides. Chemical Communications, 2012, 48, 8192.	2.2	72

KAREN FAULDS

#	Article	IF	CITATIONS
109	Tuning the interparticle distance in nanoparticle assemblies in suspension via DNA-triplex formation: correlation between plasmonic and surface-enhanced Raman scattering responses. Chemical Science, 2012, 3, 2262.	3.7	52
110	Specific detection of DNA through coupling of a TaqMan assay with surface enhanced Raman scattering (SERS). Chemical Communications, 2012, 48, 9412.	2.2	17
111	Importance of Nanoparticle Size in Colorimetric and SERSâ€Based Multimodal Trace Detection of Ni(II) Ions with Functional Gold Nanoparticles. Small, 2012, 8, 707-714.	5.2	115
112	Surface enhanced Raman scattering for multiplexed detection. Analyst, The, 2012, 137, 545-554.	1.7	109
113	Multiplexed SERS for DNA Detection. , 2012, , 353-378.		4
114	Tracking Bisphosphonates through a 20â€mm Thick Porcine Tissue by Using Surfaceâ€Enhanced Spatially Offset Raman Spectroscopy. Angewandte Chemie - International Edition, 2012, 51, 8509-8511.	7.2	42
115	SERS activity and stability of the most frequently used silver colloids. Journal of Raman Spectroscopy, 2012, 43, 202-206.	1.2	44
116	Stable dye-labelled oligonucleotide-nanoparticle conjugates for nucleic acid detection. Nanoscale, 2011, 3, 3221.	2.8	22
117	Deciphering Surface Enhanced Raman Scattering Activity of Gold Nanoworms through Optical Correlations. Journal of Physical Chemistry C, 2011, 115, 20515-20522.	1.5	11
118	Separation Free DNA Detection Using Surface Enhanced Raman Scattering. Analytical Chemistry, 2011, 83, 5817-5821.	3.2	67
119	DNA detection using enzymatic signal production and SERS. Chemical Communications, 2011, 47, 4649.	2.2	44
120	Combining functionalised nanoparticles and SERS for the detection of DNA relating to disease. Faraday Discussions, 2011, 149, 291-299.	1.6	40
121	Quantitative Detection of Human Tumor Necrosis Factor α by a Resonance Raman Enzyme-Linked Immunosorbent Assay. Analytical Chemistry, 2011, 83, 297-302.	3.2	92
122	Surface enhanced spatially offset Raman spectroscopic (SESORS) imaging – the next dimension. Chemical Science, 2011, 2, 776.	3.7	163
123	Fabricating protein immunoassay arrays on nitrocellulose using Dip-pen lithography techniques. Analyst, The, 2011, 136, 2925.	1.7	33
124	Rapid prototyping of poly(dimethoxysiloxane) dot arrays by dip-pen nanolithography. Chemical Science, 2011, 2, 211-215.	3.7	31
125	Rationally designed SERS active silica coated silver nanoparticles. Chemical Communications, 2011, 47, 4415.	2.2	39
126	Characterization of condensed phase beryllium species in the presence of aluminium and silicon matrices during electrothermal heating on graphite and tungsten platforms. Journal of Analytical Atomic Spectrometry, 2011, 26, 1722.	1.6	3

#	Article	IF	CITATIONS
127	Surface-Enhanced Raman Scattering (SERS) and Surface-Enhanced Resonance Raman Scattering (SERRS): A Review of Applications. Applied Spectroscopy, 2011, 65, 825-837.	1.2	522
128	Bayesian methods to detect dye-labelled DNA oligonucleotides in multiplexed Raman spectra. Journal of the Royal Statistical Society Series C: Applied Statistics, 2011, 60, 187-206.	0.5	12
129	The past, present and future of enzyme measurements using surface enhanced Raman spectroscopy. Chemical Science, 2010, 1, 151.	3.7	59
130	Controlled SERRS Using Biologically Driven Nanoparticle Assembly. , 2010, , .		0
131	Raman Microspectroscopy Mapping Of Chocolate. , 2010, , .		0
132	Silver Nanoparticle Dimers In Solution, Brighter Nanotags And Substrates For SMD. , 2010, , .		0
133	DNA Sequence Detection Using Surface Enhanced Resonance Raman Spectroscopy (SERRS) in a Homogeneous Multiplexed Assay. , 2010, , .		0
134	Precise Control of the Assembly of Dye-Coded Oligonucleotide Silver Nanoparticle Conjugates with Single Base Mismatch Discrimination Using Surface Enhanced Resonance Raman Scattering. Journal of Physical Chemistry C, 2010, 114, 7384-7389.	1.5	16
135	Prospects of Deep Raman Spectroscopy for Noninvasive Detection of Conjugated Surface Enhanced Resonance Raman Scattering Nanoparticles Buried within 25 mm of Mammalian Tissue. Analytical Chemistry, 2010, 82, 3969-3973.	3.2	121
136	Improved Versatility of Silver Nanoparticle Dimers for Surface-Enhanced Raman Spectroscopy. Journal of Physical Chemistry C, 2010, 114, 13249-13254.	1.5	27
137	Turning up the lights—fabrication of brighter SERRS nanotags. Chemical Communications, 2010, 46, 5247.	2.2	19
138	Rapid Raman mapping for chocolate analysis. Analytical Methods, 2010, 2, 1230.	1.3	26
139	Mixed metal nanoparticle assembly and the effect on surface-enhanced Raman scattering. Nanoscale, 2010, 2, 78-80.	2.8	20
140	DNA Sequence Detection Using Surface-Enhanced Resonance Raman Spectroscopy in a Homogeneous Multiplexed Assay. Analytical Chemistry, 2009, 81, 8134-8140.	3.2	83
141	In situ detection of pterins by SERS. Analyst, The, 2009, 134, 1561.	1.7	22
142	Rapid cell mapping using nanoparticles and SERRS. Analyst, The, 2009, 134, 170-175.	1.7	23
143	Study of the effect of nitric acid and metal-based chemical modifiers on graphite platform surfaces by Raman spectrometry. Journal of Analytical Atomic Spectrometry, 2009, 24, 1044.	1.6	10
144	Surface-enhanced Raman scattering as a detection technique for molecular diagnostics. Expert Review of Molecular Diagnostics, 2009, 9, 537-539.	1.5	22

KAREN FAULDS

#	Article	IF	CITATIONS
145	Functionalized nanoparticles for bioanalysis by SERRS. Biochemical Society Transactions, 2009, 37, 697-701.	1.6	19
146	Functionalized nanoparticles for nucleic acid sequence analysis using optical spectroscopies. Biochemical Society Transactions, 2009, 37, 441-444.	1.6	9
147	Functionalised nanoparticles and SERRS for bioanalysis. , 2009, , .		0
148	Sensitive molecular diagnostics using surface-enhanced resonance Raman scattering (SERRS). , 2009, , .		0
149	Synthesis of Unique Nanostructures with Novel Optical Properties Using Oligonucleotide Mixed–Metal Nanoparticle Conjugates. Small, 2008, 4, 1054-1057.	5.2	26
150	Ultrasensitive DNA Detection Using Oligonucleotideâ^'Silver Nanoparticle Conjugates. Analytical Chemistry, 2008, 80, 2805-2810.	3.2	236
151	Control of enhanced Raman scattering using a DNA-based assembly process of dye-coded nanoparticles. Nature Nanotechnology, 2008, 3, 548-551.	15.6	354
152	Multiplexed detection of six labelled oligonucleotides using surface enhanced resonance Raman scattering (SERRS). Analyst, The, 2008, 133, 1505.	1.7	126
153	LNA functionalized gold nanoparticles as probes for double stranded DNA through triplex formation. Chemical Communications, 2008, , 2367.	2.2	47
154	Quantitative SERRS for DNA sequence analysis. Chemical Society Reviews, 2008, 37, 1042.	18.7	155
155	SERRS-Based Enzymatic Probes for the Detection of Protease Activity. Journal of the American Chemical Society, 2008, 130, 11846-11847.	6.6	41
156	Single and double stranded DNA detection using locked nucleic acid (LNA) functionalized nanoparticles. , 2008, , .		0
157	Raman spectroscopy of illicit substances. Proceedings of SPIE, 2007, , .	0.8	1
158	Quantitative surface-enhanced resonance Raman scattering of phthalocyanine-labelled oligonucleotides. Nucleic Acids Research, 2007, 35, e42-e42.	6.5	19
159	Highly sensitive detection of dye-labelled DNA using nanostructured gold surfaces. Chemical Communications, 2007, , 2811.	2.2	35
160	Evaluation of the number of modified bases required for quantitative SERRS from labelled DNA. Analyst, The, 2007, 132, 1100.	1.7	15
161	8-Hydroxyquinolinyl Azo Dyes:  A Class of Surface-Enhanced Resonance Raman Scattering-Based Probes for Ultrasensitive Monitoring of Enzymatic Activity. Analytical Chemistry, 2007, 79, 8578-8583. –	3.2	28
162	Quantitative Simultaneous Multianalyte Detection of DNA by Dual-Wavelength Surface-Enhanced Resonance Raman Scattering. Angewandte Chemie - International Edition, 2007, 46, 1829-1831.	7.2	138

#	Article	IF	CITATIONS
163	Quantitative Enhanced Raman Scattering of Labeled DNA from Gold and Silver Nanoparticles. Small, 2007, 3, 1593-1601.	5.2	130
164	Sequenceâ€Specific DNA Detection Using Highâ€Affinity LNAâ€Functionalized Gold Nanoparticles. Small, 2007, 3, 1866-1868.	5.2	50
165	Biosensing using silver nanoparticles and surface enhanced resonance Raman scattering. Chemical Communications, 2006, , 4363.	2.2	112
166	Quantitative Surface-Enhanced Resonance Raman Spectroscopy for Analysis. , 2006, , 381-396.		13
167	A new approach for DNA detection by SERRS. Faraday Discussions, 2006, 132, 261-268.	1.6	57
168	Investigation of enzyme activity by SERRS using poly-functionalised benzotriazole derivatives as enzyme substrates. Organic and Biomolecular Chemistry, 2006, 4, 2869.	1.5	12
169	Quantitative Surface-Enhanced Resonance Raman Spectroscopy for Analysis. , 2006, , 381-396.		0
170	Quantitative detection of dye labelled DNA using surface enhanced resonance Raman scattering (SERRS) from silver nanoparticles. Talanta, 2005, 67, 667-671.	2.9	36
171	DNA detection by surface enhanced resonance Raman scattering (SERRS). Analyst, The, 2005, 130, 1125.	1.7	59
172	Identification of condensed-phase species on the thermal transformation of alkaline and alkaline earth metal sulphates on a graphite platform. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2004, 59, 827-839.	1.5	11
173	Characterization of condensed phase species produced during the thermal treatment of metal chlorides on a graphite platform using surface analysis techniques. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2004, 59, 1935-1942.	1.5	10
174	SERRS as a more sensitive technique for the detection of labelled oligonucleotides compared to fluorescence. Analyst, The, 2004, 129, 567.	1.7	132
175	Evaluation of Surface-Enhanced Resonance Raman Scattering for Quantitative DNA Analysis. Analytical Chemistry, 2004, 76, 412-417.	3.2	245
176	Comparison of Surface-Enhanced Resonance Raman Scattering from Unaggregated and Aggregated Nanoparticles. Analytical Chemistry, 2004, 76, 592-598.	3.2	159
177	Characterization of Novel Ag on TiO2 Films for Surface-Enhanced Raman Scattering. Applied Spectroscopy, 2004, 58, 922-928.	1.2	37
178	SERRS dyes. Part I. Synthesis of benzotriazole monoazo dyes as model analytes for surface enhanced resonance Raman scattering. Analyst, The, 2002, 127, 838-841.	1.7	60
179	Assessment of silver and gold substrates for the detection of amphetamine sulfate by surface enhanced Raman scattering (SERS). Analyst, The, 2002, 127, 282-286.	1.7	123
180	The inorganic chemistry of surface enhanced Raman scattering (SERS). Spectroscopic Properties of Inorganic and Organometallic Compounds, 0, , 1-21.	0.4	10

#	Article	IF	CITATIONS
181	Data processing of three-dimensional vibrational spectroscopic chemical images for pharmaceutical applications. Journal of Spectral Imaging, 0, , .	0.0	0