Audrey Adji

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5061237/publications.pdf Version: 2024-02-01

Διισφέν Δοιι

#	Article	IF	CITATIONS
1	Noninvasive determination of carotid–femoral pulse wave velocity depends critically on assessment of travel distance: a comparison with invasive measurement. Journal of Hypertension, 2009, 27, 1624-1630.	0.5	219
2	Validation of the transfer function technique for generating central from peripheral upper limb pressure waveform. American Journal of Hypertension, 2004, 17, 1059-1067.	2.0	176
3	Benefits from angiotensin-converting enzyme inhibitor †beyond blood pressure lowering': beyond blood pressure or beyond the brachial artery?. Journal of Hypertension, 2005, 23, 551-556.	0.5	148
4	Arterial Stiffness, Its Assessment, Prognostic Value, and Implications for Treatment. American Journal of Hypertension, 2011, 24, 5-17.	2.0	148
5	Effect of Sildenafil on Cardiac Performance in Patients With Heart Failure. American Journal of Cardiology, 2005, 96, 1436-1440.	1.6	109
6	An updated clinical primer on large artery mechanics: implications of pulse waveform analysis and arterial tonometry. Current Opinion in Cardiology, 2005, 20, 275-281.	1.8	104
7	Guidelines on guidelines. Journal of Hypertension, 2013, 31, 649-654.	0.5	80
8	Determination of central aortic systolic and pulse pressure from the radial artery pressure waveform. Blood Pressure Monitoring, 2004, 9, 115-121.	0.8	64
9	Noninvasive Studies of Central Aortic Pressure. Current Hypertension Reports, 2012, 14, 8-20.	3.5	50
10	Clinical use of indices determined non-invasively from the radial and carotid pressure waveforms. Blood Pressure Monitoring, 2006, 11, 215-221.	0.8	45
11	Influence of Aortic Pressure Wave Components Determined Noninvasively on Myocardial Oxygen Demand in Men and Women. Hypertension, 2011, 57, 193-200.	2.7	45
12	Cerebral Haemodynamics: Effects of Systemic Arterial Pulsatile Function and Hypertension. Current Hypertension Reports, 2018, 20, 20.	3.5	45
13	Brachial artery tonometry and the Popeye phenomenon. Journal of Hypertension, 2012, 30, 1540-1551.	0.5	44
14	Basis for use of central blood pressure measurement in office clinical practice. Journal of the American Society of Hypertension, 2008, 2, 28-38.	2.3	32
15	Noninvasive Pulse Waveform Analysis in Clinical Trials: Similarity of Two Methods for Calculating Aortic Systolic Pressure. American Journal of Hypertension, 2007, 20, 917-922.	2.0	30
16	Clinical use of applanation tonometry: Hope remains in Pandora's box. Journal of Hypertension, 2010, 28, 229-233.	0.5	26
17	Structure and Function of Systemic Arteries: Reflections on the Arterial Pulse. American Journal of Hypertension, 2018, 31, 934-940.	2.0	23
18	Arterial Aging. Drugs and Aging, 2011, 28, 779-795.	2.7	22

2

#	Article	IF	CITATIONS
19	Principles of cerebral hemodynamics when intracranial pressure is raised. Journal of Hypertension, 2015, 33, 1233-1241.	0.5	22
20	Normal cerebral vascular pulsations in humans. Journal of Hypertension, 2017, 35, 2245-2256.	0.5	21
21	Use of arterial transfer function for the derivation of aortic waveform characteristics. Journal of Hypertension, 2004, 22, 431-432.	0.5	20
22	Magnetic resonance and applanation tonometry for noninvasive determination of left ventricular load and ventricular vascular coupling in the time and frequency domain. Journal of Hypertension, 2016, 34, 1099-1108.	0.5	19
23	Effects of Heart Rate Changes on Arterial Distensibility in Humans. Hypertension, 2004, 43, E10;author reply E10-l.	2.7	17
24	Aortic Augmentation Index and Aging: Mathematical Resolution of a Physiological Dilemma?. Hypertension, 2010, 56, e9-10.	2.7	16
25	Noninvasive Generation of Aortic Pressure From Radial Pressure Waveform By Applanation Tonometry, Brachial Cuff Calibration, and Generalized Transfer Function. American Journal of Hypertension, 2014, 27, 143-145.	2.0	14
26	Non-Invasive Quantification of Ventricular Contractility, Arterial Elastic Function and Ventriculo-Arterial Coupling from a Single Diagnostic Encounter Using Simultaneous Arterial Tonometry and Magnetic Resonance Imaging. Cardiovascular Engineering and Technology, 2020, 11, 283-294.	1.6	13
27	Intracranial Pressure Waveforms are More Closely Related to Central Aortic than Radial Pressure Waveforms: Implications for Pathophysiology and Therapy. Acta Neurochirurgica Supplementum, 2016, 122, 61-64.	1.0	13
28	Female Gender Is Associated with Higher Susceptibility of Weight Induced Arterial Stiffening and Rise in Blood Pressure. Journal of Clinical Medicine, 2021, 10, 3479.	2.4	12
29	Different Effects of Vascular Aging on Ischemic Predisposition in Healthy Men and Women. Hypertension, 2018, 72, 1294-1300.	2.7	11
30	A novel method to assess valvulo-arterial load in patients with aortic valve stenosis. Journal of Hypertension, 2021, 39, 437-446.	0.5	11
31	Evaluating the Hemodynamic Basis of Age-Related Central Blood Pressure Change Using Aortic Flow Triangulation. American Journal of Hypertension, 2016, 29, 178-184.	2.0	10
32	Ageing, Hypertension and Aortic Valve Stenosis: A Conscious Uncoupling. Heart Lung and Circulation, 2021, 30, 1627-1636.	0.4	10
33	Calibration of Noninvasively Recorded Upper-Limb Pressure Waves. Hypertension, 2005, 46, e15; author reply e15-6.	2.7	9
34	Tracking of brachial and central aortic systolic pressure over the normal human lifespan: insight from the arterial pulse waveforms. Internal Medicine Journal, 2021, 51, 13-19.	0.8	7
35	Change in Pulsatile Cerebral Arterial Pressure and Flow Waves as a Therapeutic Strategy?. Acta Neurochirurgica Supplementum, 2016, 122, 167-170.	1.0	7
36	Association between Brachial-Ankle Pulse Wave Velocity as a Marker of Arterial Stiffness and Body Mass Index in a Chinese Population. Journal of Cardiovascular Development and Disease, 2022, 9, 75.	1.6	6

#	Article	IF	CITATIONS
37	Aortic Stiffness in Hypertrophic Cardiomyopathy. Journal of the American College of Cardiology, 2010, 55, 504-505.	2.8	5
38	The Human Systemic and Cerebral Circulations: Contrasts in Structure and Function. Artery Research, 2020, 26, 197-211.	0.6	5
39	Arterial Compliance and Continuous-Flow Left Ventricular Assist Device Pump Function. ASAIO Journal, 2022, 68, 925-931.	1.6	5
40	Central Pressure and Pulse Wave Amplification in the Upper Limb. Hypertension, 2010, 55, e1-2; author reply e3.	2.7	4
41	Isolated systolic hypertension in the young. Journal of Hypertension, 2013, 31, 1913-1914.	0.5	4
42	Application of arterial hemodynamics to clinical practice: A testament to medical science in London. Artery Research, 2017, 18, 81.	0.6	4
43	Pressure Paradox. Hypertension, 2017, 70, 493-495.	2.7	4
44	Phenotyping of Stable Left Ventricular Assist Device Patients Using Noninvasive Pump Flow Responses to Acute Loading Transients. Journal of Cardiac Failure, 2021, 27, 642-650.	1.7	4
45	Central Pulsatile Pressure and Flow Relationship in the Time and Frequency Domain to Characterise Hydraulic Input to the Brain and Cerebral Vascular Impedance. Acta Neurochirurgica Supplementum, 2016, 122, 307-311.	1.0	4
46	Resistant hypertension and central aortic pressure. Journal of Hypertension, 2014, 32, 699.	0.5	3
47	Arterial stiffening and arterial dilation as heritable traits caused by defective vital rubber?. European Heart Journal, 2018, 39, 2289-2290.	2.2	3
48	Eye Clinic as a Potential Site to Measure Blood Pressure. American Journal of Hypertension, 2019, 32, 12-14.	2.0	3
49	Ageing, hypertension and aortic valve stenosis – Understanding the series circuit using cardiac magnetic resonance and applanation tonometry. International Journal of Cardiology: Hypertension, 2021, 9, 100087.	2.2	3
50	Managing hypertension in children and adolescents. Journal of Hypertension, 2017, 35, 417.	0.5	2
51	Central aortic pressure calibration. Journal of Hypertension, 2017, 35, 893-894.	0.5	2
52	Magnetic Resonance Perfusion or Fractional Flow Reserve in Coronary Disease. New England Journal of Medicine, 2019, 381, 2276-2278.	27.0	2
53	Takotsubo cardiomyopathy. Journal of Hypertension, 2019, 37, 501-503.	0.5	2
54	Out-Of-Office Blood Pressure: The Road Towards Improving Detection Of Hypertension. American Journal of Hypertension, 2022, , .	2.0	2

#	Article	IF	CITATIONS
55	Interaction between nitrates and tadalafil. American Journal of Hypertension, 2004, 17, S119.	2.0	1
56	The Role of Heart Rate inÂDiastolic Coronary Perfusion and Subclinical Myocardial Ischemia. Journal of the American College of Cardiology, 2017, 69, 1647.	2.8	1
57	Spontaneous Oscillatory Left Ventricular-Aortic Uncoupling Under Continuous-Flow Left Ventricular Assist Device Support. Circulation: Heart Failure, 2021, 14, e007658.	3.9	1
58	Understanding the Impact of Hypertension on Left Ventricular Assist Device Pump Function and Thrombotic Risk. ASAIO Journal, 2021, Publish Ahead of Print, e118-e119.	1.6	1
59	Anomalies of wave reflection phenomena in clinical studies. American Journal of Hypertension, 2004, 17, S133-S134.	2.0	0
60	Can a generalized transfer function describe the relationship between pressure waveforms in central and upper limb arteries?. American Journal of Hypertension, 2004, 17, S134.	2.0	0
61	Confounding effects of heart rate on pulse wave velocity in paced patients with a low degree of atherosclerosis. Journal of Hypertension, 2005, 23, 214.	0.5	0
62	Mechanisms of age-related blood pressure change in a cross-sectional cohort of 1888 cardiology outpatients. Heart Lung and Circulation, 2009, 18, S278.	0.4	0
63	Modelling study of change in aortic pressure and flow waveforms with age. Heart Lung and Circulation, 2009, 18, S278.	0.4	0
64	3. MECHANISMS FOR AGE-CHANGE IN AORTIC AUGMENTATION PRESSURE. Artery Research, 2009, 3, 95.	0.6	0
65	Treatment of Hypertension in Patients 80 Years of Age or Older. Survey of Anesthesiology, 2009, 53, 15.	0.1	0
66	528 ESTIMATION OF AORTIC FLOW VELOCITY FROM DERIVED AORTIC PRESSURE WAVEFORMS. Journal of Hypertension, 2012, 30, e155.	0.5	0
67	347 THE VIS-A-TERGO FOR CEREBRAL PERFUSION. Journal of Hypertension, 2012, 30, e102.	0.5	0
68	346 PULSATILE PRESSURE/FLOW RELATIONS IN HUMAN CEREBRAL ARTERIES, DESCRIBED IN TIME AND FREQUENCY DOMAIN AS VASCULAR IMPEDANCE. Journal of Hypertension, 2012, 30, e102.	0.5	0
69	Misclassification of studies in â€~Brachial artery tonometry and the Popeye phenomenon'. Journal of Hypertension, 2013, 31, 208-209.	0.5	0
70	Interpreting BloodÂPressure in YoungerÂAdults. Journal of the American College of Cardiology, 2015, 66, 329-330.	2.8	0
71	Blood Pressure Measurement: A New Frontier?. Journal of Clinical Hypertension, 2016, 18, 279-280.	2.0	0
72	OS 13-06 GENERATION OF AORTIC FLOW VELOCITY FROM DERIVED AORTIC PRESSURE WAVEFORMS USING	0.5	0

#	Article	IF	CITATIONS
73	OS 13-07 DISPARATE EFFECT OF EARLY WAVE REFLECTION IN AORTIC PRESSURE AND AORTIC FLOW VELOCITY WAVEFORM. Journal of Hypertension, 2016, 34, e209-e210.	0.5	0
74	Correspondence regarding: Distinct effects of losartan and atenolol on vascular stiffness in Marfan syndrome by Bhatt et al Vascular Medicine, 2016, 21, 70-70.	1.5	0
75	A6457 Non-Invasive Assessment of Ventriculo-Arterial Function Using Simultaneous Cardiovascular Magnetic Resonance and Arterial Tonometry. Journal of Hypertension, 2018, 36, e154.	0.5	0
76	A6486 Associations between Central-Pressure-Derived Aortic Flow Velocity Waveforms and Cardiovascular Adverse Events. Journal of Hypertension, 2018, 36, e154.	0.5	0
77	A6509 The Obesity Paradox. Journal of Hypertension, 2018, 36, e154.	0.5	0
78	A17682 The Obesity Paradox. Journal of Hypertension, 2018, 36, e252.	0.5	0
79	The role of functional status on the relationship between blood pressure and cognitive decline. Journal of Hypertension, 2019, 37, 2500-2501.	0.5	0
80	Improving Hypertension Control in Poststroke Patients: A Step Toward Health Equality Across Ethnicity. American Journal of Hypertension, 2020, 33, 301-302.	2.0	0
81	NON-INVASIVE ASSESSMENT OF CENTRAL AORTIC PRESSURE, AORTIC FLOW AND VASCULAR LOAD IN PATIENTS WITH AORTIC STENOSIS BEFORE AND AFTER TRANSCATHETER AORTIC VALVE REPLACEMENT. Journal of Hypertension, 2021, 39, e417.	0.5	0
82	BRACHIAL-ANKLE PULSE WAVE VELOCITY IS INVERSELY ASSOCIATED WITH OBESITY IN A HEALTHY CHINESE POPULATION. Journal of Hypertension, 2021, 39, e336.	0.5	0
83	NON-INVASIVE EVALUATION OF AORTIC PRESSURE, FLOW AND VALVULO-ARTERIAL LOAD IN PATIENTS WITH AORTIC STENOSIS BEFORE AND AFTER TRANSCATHETER AORTIC VALVE REPLACEMENT. Journal of the American College of Cardiology, 2021, 77, 1140.	2.8	0
84	REPEATABILITY OF INDICES DETERMINED FROM THE CAROTID AND RADIAL WAVEFORMS, USING SPHYGMOCOR® AND MILLAR APPLANATION TONOMETRY. Journal of Hypertension, 2004, 22, S166.	0.5	0
85	A Historical Journey on theÂPhysiology of Blood Pressure Monitoring. , 2019, , 15-30.		0
86	Hypertension, Arterial Compliance and LVAD Pump Function. Journal of Heart and Lung Transplantation, 2020, 39, S157.	0.6	0
87	Abstract 12586: Assessing Valvuloarterial Impedance in Aortic Stenosis: A Comparison of Echocardiographic- and Cardiac Magnetic Resonance-derived Methods. Circulation, 2020, 142, .	1.6	0