List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5061106/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A handheld-type total integrated capillary electrophoresis system for SARS-CoV-2 diagnostics: Power, fluorescence detection, and data analysis by smartphone. Biosensors and Bioelectronics, 2022, 195, 113632.	5.3	17
2	Removal of bisphenol A from wastewater by physical, chemical and biological remediation techniques. A review. Environmental Chemistry Letters, 2022, 20, 1801-1837.	8.3	42
3	Recyclable 2D Colloid Surfactants with High Catalytic Activities at Pickering Emulsion Interfaces. Advanced Functional Materials, 2022, 32, .	7.8	17
4	Phase-transfer biocatalytic methane-to-methanol conversion using the spontaneous phase-separable membrane μCSTR. Journal of Industrial and Engineering Chemistry, 2022, 111, 389-397.	2.9	3
5	Amine-bilayer-functionalized cellulose-chitosan composite hydrogel for the efficient uptake of hazardous metal cations and catalysis in polluted water. Journal of Hazardous Materials, 2022, 436, 129112.	6.5	29
6	A surfactant-free approach: Novel one-step ultrasonic nebulizer spray method to generate amphiphilic Janus particles. Journal of Colloid and Interface Science, 2022, 627, 375-384.	5.0	5
7	Formation of structural defects within UiO-66(Zr)-(OH)2 framework for enhanced CO2 adsorption using a microwave-assisted continuous-flow tubular reactor. Microporous and Mesoporous Materials, 2021, 312, 110746.	2.2	45
8	Dual-functional micro-adsorbents: Application for simultaneous adsorption of cesium and strontium. Chemosphere, 2021, 263, 128266.	4.2	37
9	Characteristics of a Multiple-Layered Graphene Oxide Memory Thin Film Transistor with Gold Nanoparticle Embedded as Charging Elements. Journal of Nanomaterials, 2021, 2021, 1-9.	1.5	3
10	Energetically Preferred Bilayered Coacervation of Oppositely Charged ZrHP Nanoplatelets. ACS Applied Materials & Interfaces, 2021, 13, 7664-7671.	4.0	7
11	Waterproof Lightâ€Emitting Metal Halide Perovskite–Polymer Composite Microparticles Prepared via Microfluidic Device. Particle and Particle Systems Characterization, 2021, 38, 2100006.	1.2	6
12	Biofuel upgrade reactions via phase-transfer catalysis of methanotrophs. Journal of Industrial and Engineering Chemistry, 2021, 95, 305-311.	2.9	5
13	Metal–organic frameworks/alginate composite beads as effective adsorbents for the removal of hexavalent chromium from aqueous solution. Chemosphere, 2021, 270, 129487.	4.2	66
14	Fabrication of kinetically stable micropolymofoam particles and the spontaneous induction of morphological transformation. Chemical Engineering Journal, 2021, 424, 130505.	6.6	1
15	Emulsions stabilized by fine dust particles. Journal of Industrial and Engineering Chemistry, 2020, 82, 190-196.	2.9	5
16	Interactions between polystyrene particles with diameters of several tens to hundreds of micrometers at the oilâ \in "water interface. Journal of Colloid and Interface Science, 2020, 560, 838-848.	5.0	8
17	Preparation of eco-friendly alginate-based Pickering stabilizers using a dual ultrasonic nebulizer spray method. Journal of Industrial and Engineering Chemistry, 2020, 84, 96-105.	2.9	10
18	Interpretation of interfacial interactions between lenticular particles. Journal of Colloid and Interface Science, 2020, 580, 592-600.	5.0	3

#	Article	IF	CITATIONS
19	Janus amphiphilic nanoplatelets as smart colloid surfactants with complementary face-to-face interactions. Chemical Communications, 2020, 56, 6031-6034.	2.2	12
20	Interfacial Configurations of Lens-Shaped Particles. Macromolecular Research, 2020, 28, 953-959.	1.0	1
21	Interpretation of Electrostatic Self-Potential Measurements Using Interface-Trapped Microspheres with Surface Heterogeneity. ACS Applied Polymer Materials, 2020, 2, 1304-1311.	2.0	6
22	Microwave-assisted continuous-flow synthesis of mixed-ligand UiO-66(Zr) frameworks and their application to toluene adsorption. Journal of Industrial and Engineering Chemistry, 2020, 86, 178-185.	2.9	48
23	Photoinduced Reversible Bending and Guest Molecule Release of Azobenzene-Containing Polydiacetylene Nanotubes. Scientific Reports, 2019, 9, 15982.	1.6	16
24	Uniform Ag Nanocubes Prepared by AgCl Particle–Mediated Heterogeneous Nucleation and Disassembly and Their Mechanism Study by DFT Calculation. Small, 2019, 15, 1904031.	5.2	2
25	The recyclability of alginate hydrogel particles used as a palladium catalyst support. Journal of Industrial and Engineering Chemistry, 2019, 73, 306-315.	2.9	34
26	Mapping Anisotropic and Heterogeneous Colloidal Interactions via Optical Laser Tweezers. Journal of Physical Chemistry Letters, 2019, 10, 1691-1697.	2.1	15
27	Low temperature solution processable TiO2 nano-sol for electron transporting layer of flexible perovskite solar cells. Solar Energy Materials and Solar Cells, 2019, 194, 1-6.	3.0	30
28	Direct measurement of electrostatic interactions between poly(methyl methacrylate) microspheres with optical laser tweezers. Soft Matter, 2019, 15, 8051-8058.	1.2	7
29	Multiple roles of palladium-coated magnetic anisotropic particles as catalysts, catalyst supports, and micro-stirrers. Chemical Engineering Journal, 2018, 339, 125-132.	6.6	22
30	Efficient catalyst recovery systems based on Pd-coated Î ³ -alumina particles. Journal of Industrial and Engineering Chemistry, 2018, 62, 471-478.	2.9	5
31	Smartphone-Based VOC Sensor Using Colorimetric Polydiacetylenes. ACS Applied Materials & Interfaces, 2018, 10, 5014-5021.	4.0	106
32	Heterogeneous Capillary Interactions of Interface-Trapped Ellipsoid Particles Using the Trap-Release Method. Langmuir, 2018, 34, 384-394.	1.6	17
33	Magnetic-Patchy Janus Colloid Surfactants for Reversible Recovery of Pickering Emulsions. ACS Applied Materials & Interfaces, 2018, 10, 1408-1414.	4.0	36
34	One-step production of highly anisotropic particles via a microfluidic method. Journal of Industrial and Engineering Chemistry, 2018, 64, 328-336.	2.9	9
35	Highly efficient catalytic systems based on Pd-coated microbeads. Applied Surface Science, 2018, 429, 108-114.	3.1	5
36	Longâ€ŧerm stable hydrophilic surface modification of poly(ether ether ketone) via the multilayered chemical grafting method. Journal of Applied Polymer Science, 2018, 135, 46042.	1.3	13

#	Article	IF	CITATIONS
37	High Yield Synthesis of Polystyrene Microspheres by Continuous Long Tubular Reactor and Their Application to Antiglare Film for High Resolution Displays. Macromolecular Research, 2018, 26, 1095-1098.	1.0	0
38	Geometric Effects of Colloidal Particles on Stochastic Interface Adsorption. Langmuir, 2018, 34, 8839-8847.	1.6	12
39	Fabrication of Magnetically Stirrable Anisotropic Microparticles via the Microfluidic Method. Particle and Particle Systems Characterization, 2018, 35, 1700486.	1.2	11
40	Analytical calculations of optical trapping forces for drag calibration: Effects of mismatch between beam focus and particle center. Macromolecular Research, 2017, 25, 282-289.	1.0	6
41	Electrostatic interactions between particles through heterogeneous fluid phases. Soft Matter, 2017, 13, 6647-6658.	1.2	2
42	Heterogeneous interface adsorption of colloidal particles. Soft Matter, 2017, 13, 6234-6242.	1.2	21
43	High-Performance Solid-State PbS Quantum Dot-Sensitized Solar Cells Prepared by Introduction of Hybrid Perovskite Interlayer. ACS Applied Materials & Interfaces, 2017, 9, 41104-41110.	4.0	22
44	Aqueous-phase synthesis of metal nanoparticles using phosphates as stabilizers. Korean Journal of Chemical Engineering, 2017, 34, 231-233.	1.2	1
45	Flexible patchâ€ŧype hydrochromic polydiacetylene sensor for human sweat pore mapping. Journal of Applied Polymer Science, 2017, 134, .	1.3	13
46	Morphological evolution of copper nanoparticles: Microemulsion reactor system versus batch reactor system. Journal of Crystal Growth, 2017, 469, 31-35.	0.7	6
47	Transition Behaviors of Configurations of Colloidal Particles at a Curved Oil-Water Interface. Materials, 2016, 9, 138.	1.3	12
48	Effect of Geometric and Chemical Anisotropy of Janus Ellipsoids on Janus Boundary Mismatch at the Fluid–Fluid Interface. Materials, 2016, 9, 664.	1.3	14
49	Inkjet Printing: Inkjetâ€Printable Amphiphilic Polydiacetylene Precursor for Hydrochromic Imaging on Paper (Adv. Funct. Mater. 4/2016). Advanced Functional Materials, 2016, 26, 631-631.	7.8	1
50	Hydrochromic Approaches to Mapping Human Sweat Pores. Accounts of Chemical Research, 2016, 49, 1211-1222.	7.6	84
51	Creation of functional polydiacetylene images on paper using inkjet printing technology. Macromolecular Research, 2016, 24, 943-950.	1.0	14
52	A Facile Surface Modification of Polyethylenimine-Stabilized Gold Nanoparticles and Their Enhanced Cytotoxicity. Journal of Nanoscience and Nanotechnology, 2016, 16, 7043-7048.	0.9	2
53	Capillarity-induced directed self-assembly of patchy hexagram particles at the air–water interface. Soft Matter, 2016, 12, 5847-5853.	1.2	17
54	Inkjetâ€Printable Amphiphilic Polydiacetylene Precursor for Hydrochromic Imaging on Paper. Advanced Functional Materials, 2016, 26, 498-506.	7.8	109

#	Article	IF	CITATIONS
55	Synthesis of Monodisperse Biâ€Compartmentalized Amphiphilic Janus Microparticles for Tailored Assembly at the Oil–Water Interface. Angewandte Chemie, 2016, 128, 4585-4589.	1.6	10
56	Synthesis of Monodisperse Bi ompartmentalized Amphiphilic Janus Microparticles for Tailored Assembly at the Oil–Water Interface. Angewandte Chemie - International Edition, 2016, 55, 4509-4513.	7.2	47
57	Sweat Pore Mapping Using Hydrophilic Polymer Films. Journal of Nanoscience and Nanotechnology, 2016, 16, 12263-12267.	0.9	2
58	Sonoanatomical Change of Phrenic Nerve According to Posture During Ultrasound-Guided Stellate Ganglion Block. Annals of Rehabilitation Medicine, 2016, 40, 244.	0.6	10
59	Dynamically Tuning Particle Interactions and Assemblies at Soft Interfaces: Reversible Order-Disorder Transitions in 2D Particle Monolayers. Small, 2015, 11, 4560-4567.	5.2	16
60	Heterogeneity of single-colloid self-potentials at an oil–water interface. Soft Matter, 2015, 11, 8812-8817.	1.2	8
61	Sweat pore mapping using a fluorescein–polymer composite film for fingerprint analysis. Chemical Communications, 2015, 51, 3177-3180.	2.2	32
62	Stabilization and fabrication of microbubbles: applications for medical purposes and functional materials. Soft Matter, 2015, 11, 2067-2079.	1.2	88
63	Lateral capillary interactions between colloids beneath an oil–water interface that are driven by out-of-plane electrostatic double-layer interactions. Soft Matter, 2015, 11, 8701-8706.	1.2	16
64	Effect of interaction heterogeneity on colloidal arrangements at a curved oil–water interface. Soft Matter, 2015, 11, 318-323.	1.2	8
65	Ultrasound-Guided Lateral Femoral Cutaneous Nerve Conduction Study. Annals of Rehabilitation Medicine, 2015, 39, 47.	0.6	16
66	Shoulder Manipulation After Distention Arthrography: Does Audible Cracking Affect Improvement in Adhesive Capsulitis? A Preliminary Study. Annals of Rehabilitation Medicine, 2015, 39, 745.	0.6	3
67	Particles at fluid–fluid interfaces: From single-particle behavior to hierarchical assembly of materials. MRS Bulletin, 2014, 39, 1089-1098.	1.7	39
68	CHAPTER 2. Interactions and Conformations of Particles at Fluid-Fluid Interfaces. RSC Soft Matter, 2014, , 8-44.	0.2	4
69	A Rapid One-Step Fabrication of Patternable Superhydrophobic Surfaces Driven by Marangoni Instability. Langmuir, 2014, 30, 2828-2834.	1.6	31
70	Hydrochromic conjugated polymers for human sweat pore mapping. Nature Communications, 2014, 5, 3736.	5.8	213
71	Triblock Cylinders at Fluid–Fluid Interfaces. Langmuir, 2014, 30, 13199-13204.	1.6	11
72	Pairwise interactions of colloids in two-dimensional geometric confinement. Soft Matter, 2014, 10, 9675-9680.	1.2	15

#	Article	IF	CITATIONS
73	Effects of Coating on the Optical Trapping Efficiency of Microspheres via Geometrical Optics Approximation. Langmuir, 2014, 30, 11055-11061.	1.6	6
74	Beauty of Lotus is More than Skin Deep: Highly Buoyant Superhydrophobic Films. ACS Applied Materials & Interfaces, 2014, 6, 7009-7013.	4.0	23
75	Sonographic Evaluation of the Peripheral Nerves in Hereditary Neuropathy With Liability to Pressure Palsies: A Case Report. Annals of Rehabilitation Medicine, 2014, 38, 109.	0.6	8
76	Optical trapping forces depending on size of dielectric polystyrene microspheres. Macromolecular Research, 2013, 21, 1167-1170.	1.0	8
77	Thermodynamically Stable Emulsions Using Janus Dumbbells as Colloid Surfactants. Langmuir, 2013, 29, 12679-12687.	1.6	98
78	Geometrically and chemically anisotropic particles at an oil–water interface. Soft Matter, 2013, 9, 3383.	1.2	59
79	Amphiphilic Janus particles at fluid interfaces. Soft Matter, 2013, 9, 6604.	1.2	190
80	Spontaneous Particle Transport through a Triple-Fluid Phase Boundary. Langmuir, 2013, 29, 9662-9667.	1.6	9
81	Double Hydrophilic Janus Cylinders at an Air–Water Interface. Langmuir, 2013, 29, 1841-1849.	1.6	42
82	The Effect of Electrolyte Concentration for Colloid Adsorption toward a Fluid-Fluid Interface. Korean Chemical Engineering Research, 2013, 51, 527-530.	0.2	3
83	Attachment Energy of Janus Particles at Fluid-Fluid Interfaces. Korean Chemical Engineering Research, 2013, 51, 655-660.	0.2	0
84	Configuration of nonspherical amphiphilic particles at a fluid–fluid interface. Soft Matter, 2012, 8, 7690.	1.2	77
85	Equilibrium Orientation of Nonspherical Janus Particles at Fluid–Fluid Interfaces. ACS Nano, 2012, 6, 782-790.	7.3	154
86	Micromechanics of colloidal aggregates at the oil–water interface. Soft Matter, 2011, 7, 7683.	1.2	14
87	Attractive interactions between colloids at the oil–water interface. Soft Matter, 2011, 7, 7676.	1.2	124
88	Janus particles at an oil–water interface. Soft Matter, 2011, 7, 6413.	1.2	157
89	Generation of Amphiphilic Janus Bubbles and Their Behavior at an Air–Water Interface. Advanced Functional Materials, 2011, 21, 3924-3931.	7.8	59
90	Abdominal Visceral Adipose Tissue Predicts Risk of Colorectal Adenoma in Both Sexes. Clinical Gastroenterology and Hepatology, 2010, 8, 443-450.e2.	2.4	79

#	Article	IF	CITATIONS
91	Fabrication of Unusual Asymmetric Colloids at an Oilâ^'Water Interface. Langmuir, 2010, 26, 10406-10410.	1.6	46
92	Finite Ion-Size Effects Dominate the Interaction between Charged Colloidal Particles at an Oil-Water Interface. Physical Review Letters, 2010, 105, 048303.	2.9	121
93	Fluid-interface templating of two-dimensional colloidal crystals. Soft Matter, 2010, 6, 485-488.	1.2	26
94	Heterogeneity of the electrostatic repulsion between colloids at the oil–water interface. Soft Matter, 2010, 6, 5327.	1.2	93
95	Direct Measurements of the Effects of Salt and Surfactant on Interaction Forces between Colloidal Particles at Waterâ^'Oil Interfaces. Langmuir, 2008, 24, 1686-1694.	1.6	186
96	Optical Trapping Forces for Colloids at the Oilâ^'Water Interface. Langmuir, 2008, 24, 13383-13392.	1.6	45
97	The solid-phase synthesis of amino acid-derived diacetylene lipids. Macromolecular Research, 2005, 13, 253-256.	1.0	3
98	Patterned fluorescence images with at-Boc-protected coumarin derivative. Macromolecular Research, 2004, 12, 615-617.	1.0	5