
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5061015/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Microwave Absorption Properties of Carbon Nanocoils Coated with Highly Controlled Magnetic Materials by Atomic Layer Deposition. ACS Nano, 2012, 6, 11009-11017.	14.6	727
2	Greatly Increased Toughness of Infiltrated Spider Silk. Science, 2009, 324, 488-492.	12.6	372
3	High densities of magnetic nanoparticles supported on graphene fabricated by atomic layer deposition and their use as efficient synergistic microwave absorbers. Nano Research, 2014, 7, 704-716.	10.4	316
4	Porous TiO ₂ Nanotubes with Spatially Separated Platinum and CoO _x Cocatalysts Produced by Atomic Layer Deposition for Photocatalytic Hydrogen Production. Angewandte Chemie - International Edition, 2017, 56, 816-820.	13.8	293
5	O-coordinated W-Mo dual-atom catalyst for pH-universal electrocatalytic hydrogen evolution. Science Advances, 2020, 6, eaba6586.	10.3	263
6	Enhanced microwave absorption of ZnO coated with Ni nanoparticles produced by atomic layer deposition. Journal of Materials Chemistry A, 2015, 3, 2734-2740.	10.3	192
7	Spillover in Heterogeneous Catalysis: New Insights and Opportunities. ACS Catalysis, 2021, 11, 3159-3172.	11.2	175
8	Porous Si Nanowires from Cheap Metallurgical Silicon Stabilized by a Surface Oxide Layer for Lithium Ion Batteries. Advanced Functional Materials, 2015, 25, 6701-6709.	14.9	173
9	Enhanced Catalytic Activity for Methanol Electroâ€oxidation of Uniformly Dispersed Nickel Oxide Nanoparticles—Carbon Nanotube Hybrid Materials. Small, 2012, 8, 3390-3395.	10.0	144
10	Design and Properties of Confined Nanocatalysts by Atomic Layer Deposition. Accounts of Chemical Research, 2017, 50, 2309-2316.	15.6	134
11	Origin of synergistic effects in bicomponent cobalt oxide-platinum catalysts for selective hydrogenation reaction. Nature Communications, 2019, 10, 4166.	12.8	132
12	Synergistic effects in atomic-layer-deposited PtCox/CNTs catalysts enhancing hydrolytic dehydrogenation of ammonia borane. Applied Catalysis B: Environmental, 2018, 235, 256-263.	20.2	121
13	Rayleigh-Instability-Induced Metal Nanoparticle Chains Encapsulated in Nanotubes Produced by Atomic Layer Deposition. Nano Letters, 2008, 8, 114-118.	9.1	118
14	Alternate nonmagnetic and magnetic multilayer nanofilms deposited on carbon nanocoils by atomic layer deposition to tune microwave absorption property. Carbon, 2016, 98, 196-203.	10.3	114
15	Wire-in-tube ZnO@carbon by molecular layer deposition: Accurately tunable electromagnetic parameters and remarkable microwave absorption. Chemical Engineering Journal, 2020, 382, 122860.	12.7	113
16	Interface Tailoring of Heterogeneous Catalysts by Atomic Layer Deposition. ACS Catalysis, 2018, 8, 10064-10081.	11.2	109
17	The precise decoration of Pt nanoparticles with Fe oxide by atomic layer deposition for the selective hydrogenation of cinnamaldehyde. Applied Catalysis B: Environmental, 2017, 218, 591-599.	20.2	105
18	High Efficiency Cu-ZnO Hydrogenation Catalyst: The Tailoring of Cu-ZnO Interface Sites by Molecular Layer Deposition. ACS Catalysis, 2015, 5, 5567-5573.	11.2	99

#	Article	IF	CITATIONS
19	Ni nanoparticles supported on CNTs with excellent activity produced by atomic layer deposition for hydrogen generation from the hydrolysis of ammonia borane. Catalysis Science and Technology, 2016, 6, 2112-2119.	4.1	98
20	Multiply Confined Nickel Nanocatalysts Produced by Atomic Layer Deposition for Hydrogenation Reactions. Angewandte Chemie - International Edition, 2015, 54, 9006-9010.	13.8	96
21	Highly dispersed Pt nanoparticles supported on carbon nanotubes produced by atomic layer deposition for hydrogen generation from hydrolysis of ammonia borane. Catalysis Science and Technology, 2017, 7, 322-329.	4.1	96
22	Highly Efficient Microwave Absorption of Magnetic Nanospindle–Conductive Polymer Hybrids by Molecular Layer Deposition. ACS Applied Materials & Interfaces, 2017, 9, 11116-11125.	8.0	91
23	A Tandem Catalyst with Multiple Metal Oxide Interfaces Produced by Atomic Layer Deposition. Angewandte Chemie - International Edition, 2016, 55, 7081-7085.	13.8	88
24	Helical carbon nanofibers with a symmetric growth mode. Carbon, 2004, 42, 1917-1922.	10.3	87
25	Highly Stable Porous-Carbon-Coated Ni Catalysts for the Reductive Amination of Levulinic Acid via an Unconventional Pathway. ACS Catalysis, 2017, 7, 4927-4935.	11.2	85
26	Porous TiO ₂ /Pt/TiO ₂ Sandwich Catalyst for Highly Selective Semihydrogenation of Alkyne to Olefin. ACS Catalysis, 2017, 7, 6567-6572.	11.2	83
27	Flexible design of gradient multilayer nanofilms coated on carbon nanofibers by atomic layer deposition for enhanced microwave absorption performance. Nano Research, 2018, 11, 530-541.	10.4	83
28	Coaxial multi-interface hollow Ni-Al2O3-ZnO nanowires tailored by atomic layer deposition for selective-frequency absorptions. Nano Research, 2017, 10, 1595-1607.	10.4	82
29	In situ tuning of electronic structure of catalysts using controllable hydrogen spillover for enhanced selectivity. Nature Communications, 2020, 11, 4773.	12.8	81
30	Platinum Nanoparticle-Deposited Ti ₃ C ₂ T _{<i>x</i>} MXene for Hydrogen Evolution Reaction. Industrial & Engineering Chemistry Research, 2020, 59, 1822-1828.	3.7	79
31	NiO/SiC Nanocomposite Prepared by Atomic Layer Deposition Used as a Novel Electrocatalyst for Nonenzymatic Glucose Sensing. ACS Applied Materials & amp; Interfaces, 2015, 7, 4772-4777.	8.0	78
32	Nanoporous Nitrogenâ€Doped Titanium Dioxide with Excellent Photocatalytic Activity under Visible Light Irradiation Produced by Molecular Layer Deposition. Angewandte Chemie - International Edition, 2013, 52, 9196-9200.	13.8	72
33	Enhanced photoelectrochemical water splitting performance of TiO ₂ nanotube arrays coated with an ultrathin nitrogen-doped carbon film by molecular layer deposition. Nanoscale, 2014, 6, 6692-6700.	5.6	69
34	Tailoring Pt–Fe ₂ O ₃ Interfaces for Selective Reductive Coupling Reaction To Synthesize Imine. ACS Catalysis, 2016, 6, 6560-6566.	11.2	64
35	Water-compatible surface molecularly imprinted polymers with synergy of bi-functional monomers for enhanced selective adsorption of bisphenol A from aqueous solution. Environmental Science: Nano, 2016, 3, 213-222.	4.3	62
36	Size-Selective Catalytic Growth of Nearly 100% Pure Carbon Nanocoils with Copper Nanoparticles Produced by Atomic Layer Deposition. ACS Nano, 2014, 8, 5330-5338.	14.6	61

#	Article	IF	CITATIONS
37	Large-scale production of silicon nanoparticles@graphene embedded in nanotubes as ultra-robust battery anodes. Journal of Materials Chemistry A, 2017, 5, 4809-4817.	10.3	61
38	General Assembly Method for Linear Metal Nanoparticle Chains Embedded in Nanotubes. Nano Letters, 2008, 8, 3221-3225.	9.1	60
39	Uniform Fe ₃ O ₄ coating on flower-like ZnO nanostructures by atomic layer deposition for electromagnetic wave absorption. Dalton Transactions, 2015, 44, 18804-18809.	3.3	58
40	Preparation and Elastic Properties of Helical Nanotubes Obtained by Atomic Layer Deposition with Carbon Nanocoils as Templates. Small, 2010, 6, 910-914.	10.0	57
41	Atomic layer deposition of Pt nanoparticles on low surface area zirconium oxide for the efficient base-free oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid. Applied Catalysis A: General, 2018, 555, 98-107.	4.3	56
42	Efficient adsorptive removal of dibenzothiophene by graphene oxide-based surface molecularly imprinted polymer. RSC Advances, 2014, 4, 1469-1475.	3.6	55
43	Efficient and controllable vapor to solid doping of the polythiophene P3HT by low temperature vapor phase infiltration. Journal of Materials Chemistry C, 2017, 5, 2686-2694.	5.5	54
44	Porous Fe2O3 nanotubes with α-γ phase junction for enhanced charge separation and photocatalytic property produced by molecular layer deposition. Applied Catalysis B: Environmental, 2019, 248, 218-225.	20.2	54
45	Active sites engineering of Pt/CNT oxygen reduction catalysts by atomic layer deposition. Journal of Energy Chemistry, 2020, 45, 59-66.	12.9	54
46	Photocatalytic conversion of CO2 into light olefins over TiO2 nanotube confined Cu clusters with high ratio of Cu+. Applied Catalysis B: Environmental, 2020, 263, 118133.	20.2	54
47	Facile and Effective Coloration of Dye-Inert Carbon Fiber Fabrics with Tunable Colors and Excellent Laundering Durability. ACS Nano, 2017, 11, 10330-10336.	14.6	53
48	Nitrogen- and oxygen-containing activated carbon nanotubes with improved capacitive properties. RSC Advances, 2014, 4, 5524.	3.6	52
49	Atomic Design and Fine-Tuning of Subnanometric Pt Catalysts to Tame Hydrogen Generation. ACS Catalysis, 2021, 11, 4146-4156.	11.2	52
50	Covalently Connected Nb ₄ N _{5–<i>x</i>} O _{<i>x</i>} –MoS ₂ Heterocatalysts with Desired Electron Density to Boost Hydrogen Evolution. ACS Nano, 2020, 14, 4925-4937.	14.6	50
51	Unravelling the synergy in platinum-nickel bimetal catalysts designed by atomic layer deposition for efficient hydrolytic dehydrogenation of ammonia borane. Applied Catalysis B: Environmental, 2022, 306, 121116.	20.2	50
52	Highly Dispersed Single-Atom Pt and Pt Clusters in the Fe-Modified KL Zeolite with Enhanced Selectivity for <i>n</i> -Heptane Aromatization. ACS Applied Materials & Interfaces, 2019, 11, 29858-29867.	8.0	49
53	Unexpected Oxidation Behavior of Cu Nanoparticles Embedded in Porous Alumina Films Produced by Molecular Layer Deposition. Nano Letters, 2011, 11, 2503-2509.	9.1	48
54	Controllable deposition of Pt nanoparticles into a KL zeolite by atomic layer deposition for highly efficient reforming of n-heptane to aromatics. Catalysis Science and Technology, 2017, 7, 1342-1350.	4.1	48

#	Article	IF	CITATIONS
55	NiO/nanoporous graphene composites with excellent supercapacitive performance produced by atomic layer deposition. Nanotechnology, 2014, 25, 504001.	2.6	46
56	Preparation and microwave absorption properties of uniform TiO ₂ @C core–shell nanocrystals. RSC Advances, 2015, 5, 77443-77448.	3.6	45
57	Highly efficient CoO _x /SBA-15 catalysts prepared by atomic layer deposition for the epoxidation reaction of styrene. Catalysis Science and Technology, 2017, 7, 2032-2038.	4.1	45
58	Distance Effect of Ni-Pt Dual Sites for Active Hydrogen Transfer in Tandem Reaction. Innovation(China), 2020, 1, 100029.	9.1	45
59	Enhanced photoelectrochemical performance of quantum dot-sensitized TiO ₂ nanotube arrays with Al ₂ O ₃ overcoating by atomic layer deposition. Physical Chemistry Chemical Physics, 2016, 18, 17404-17413.	2.8	44
60	Enhanced hydrogen generation by reverse spillover effects over bicomponent catalysts. Nature Communications, 2022, 13, 118.	12.8	44
61	CNT–Ni/SiC hierarchical nanostructures: preparation and their application in electrocatalytic oxidation of methanol. Journal of Materials Chemistry A, 2013, 1, 2104-2109.	10.3	43
62	Offset Initial Sodium Loss To Improve Coulombic Efficiency and Stability of Sodium Dual-Ion Batteries. ACS Applied Materials & Interfaces, 2018, 10, 15751-15759.	8.0	43
63	Encapsulation of Homogeneous Catalysts in Mesoporous Materials Using Diffusionâ€Limited Atomic Layer Deposition. Angewandte Chemie - International Edition, 2018, 57, 1091-1095.	13.8	42
64	Selectivity Regulation in Au-Catalyzed Nitroaromatic Hydrogenation by Anchoring Single-Site Metal Oxide Promoters. ACS Catalysis, 2020, 10, 2837-2844.	11.2	42
65	Functionalization of multiwalled carbon nanotubes with uniform polyurea coatings by molecular layer deposition. Carbon, 2015, 82, 470-478.	10.3	41
66	Tailoring the Microporosity of Polymers of Intrinsic Microporosity for Advanced Gas Separation by Atomic Layer Deposition. Angewandte Chemie - International Edition, 2021, 60, 17875-17880.	13.8	41
67	Silicon nanowires loaded with iron phosphide for effective solar-driven hydrogen production. Journal of Materials Chemistry A, 2015, 3, 17669-17675.	10.3	38
68	Styrene hydrogenation performance of Pt nanoparticles with controlled size prepared by atomic layer deposition. Catalysis Science and Technology, 2015, 5, 4218-4223.	4.1	38
69	Facile Fabrication of Multifunctional Hybrid Silk Fabrics with Controllable Surface Wettability and Laundering Durability. ACS Applied Materials & Interfaces, 2016, 8, 5653-5660.	8.0	38
70	Structure and reactivity of single site Ti catalysts for propylene epoxidation. Journal of Catalysis, 2019, 377, 419-428.	6.2	38
71	Improved electrochemical performance of CoOx-NiO/Ti3C2Tx MXene nanocomposites by atomic layer deposition towards high capacitance supercapacitors. Journal of Alloys and Compounds, 2021, 862, 158546.	5.5	38
72	Label-free aptasensor for thrombin using a glassy carbon electrode modified with a graphene-porphyrin composite. Mikrochimica Acta, 2014, 181, 189-196.	5.0	37

#	Article	IF	CITATIONS
73	Atomic Layer Deposition of a Pt-Skin Catalyst for Base-Free Aerobic Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid. Industrial & Engineering Chemistry Research, 2018, 57, 2811-2818.	3.7	37
74	Enhancing effect of MgO modification of Cu–Al spinel oxide catalyst for methanol steam reforming. International Journal of Hydrogen Energy, 2020, 45, 477-489.	7.1	35
75	Graphene coated with controllable N-doped carbon layer by molecular layer deposition as electrode materials for supercapacitors. Journal of Power Sources, 2016, 315, 254-260.	7.8	34
76	Tailoring Pt locations in KL zeolite by improved atomic layer deposition for excellent performance in n-heptane aromatization. Journal of Catalysis, 2018, 365, 163-173.	6.2	34
77	Core-shell, wire-in-tube and nanotube structures: Carbon-based materials by molecular layer deposition for efficient microwave absorption. Carbon, 2021, 173, 145-153.	10.3	34
78	Tuning the Conductivity of Polyaniline through Doping by Means of Single Precursor Vapor Phase Infiltration. Advanced Materials Interfaces, 2017, 4, 1600806.	3.7	32
79	Atomic Layer Deposition Assisted Template Approach for Electrochemical Synthesis of Au Crescent-Shaped Half-Nanotubes. ACS Nano, 2011, 5, 788-794.	14.6	31
80	Ultrathin Coating of Confined Pt Nanocatalysts by Atomic Layer Deposition for Enhanced Catalytic Performance in Hydrogenation Reactions. Chemistry - A European Journal, 2016, 22, 8438-8443.	3.3	31
81	Genuine Active Species Generated from Fe ₃ N Nanotube by Synergistic CoNi Doping for Boosted Oxygen Evolution Catalysis. Small, 2020, 16, e2003824.	10.0	31
82	Conductive Polymer–Inorganic Hybrid Materials through Synergistic Mutual Doping of the Constituents. ACS Applied Materials & Interfaces, 2017, 9, 27964-27971.	8.0	30
83	Simultaneous Ni nanoparticles decoration and Ni doping of CdS nanorods for synergistically promoting photocatalytic H2 evolution. Applied Surface Science, 2020, 508, 144869.	6.1	29
84	Elucidating the restructuring-induced highly active bimetallic Pt–Co/KL catalyst for the aromatization of <i>n</i> -heptane. Chemical Communications, 2020, 56, 892-895.	4.1	28
85	Pt/HZSM-5 catalyst synthesized by atomic layer deposition for aqueous-phase hydrogenation of levulinic acid to valeric acid. Journal of Fuel Chemistry and Technology, 2017, 45, 714-722.	2.0	27
86	Turning the product selectivity of nitrile hydrogenation from primary to secondary amines by precise modification of Pd/SiC catalysts using NiO nanodots. Catalysis Science and Technology, 2019, 9, 2266-2272.	4.1	27
87	Strong Co-O-Si bonded ultra-stable single-atom Co/SBA-15 catalyst for selective hydrogenation of CO2 to CO. Chem Catalysis, 2022, 2, 610-621.	6.1	27
88	Porous titania nanotube confined ultrafine platinum catalysts synthesized by atomic layer deposition with enhanced hydrolytic dehydrogenation performance. Applied Catalysis B: Environmental, 2022, 312, 121405.	20.2	26
89	Uniform and Conformal Carbon Nanofilms Produced Based on Molecular Layer Deposition. Materials, 2013, 6, 5602-5612.	2.9	24
90	TiO ₂ –graphene hybrid nanostructures by atomic layer deposition with enhanced electrochemical performance for Pb(<scp>ii</scp>) and Cd(<scp>ii</scp>) detection. RSC Advances, 2015, 5, 4343-4349.	3.6	24

#	Article	IF	CITATIONS
91	InGaN/GaN Multiple Quantum Well Photoanode Modified with Cobalt Oxide for Water Oxidation. ACS Applied Energy Materials, 2018, 1, 6417-6424.	5.1	23
92	Rational construction of porous N-doped Fe2O3 films on porous graphene foams by molecular layer deposition for tunable microwave absorption. Journal of Colloid and Interface Science, 2021, 598, 45-55.	9.4	23
93	Rhodium nanoparticles confined in titania nanotubes for efficient Hydrogen evolution from Ammonia Borane. Journal of Colloid and Interface Science, 2022, 609, 755-763.	9.4	23
94	A Tandem Catalyst with Multiple Metal Oxide Interfaces Produced by Atomic Layer Deposition. Angewandte Chemie, 2016, 128, 7197-7201.	2.0	22
95	Atomic layer deposition assisted fabrication of high-purity carbon nanocoil for electrochemical energy storage. Electrochimica Acta, 2018, 268, 283-294.	5.2	22
96	Precise engineering of ultra-thin Fe2O3 decorated Pt-based nanozymes via atomic layer deposition to switch off undesired activity for enhanced sensing performance. Sensors and Actuators B: Chemical, 2020, 305, 127436.	7.8	22
97	High photocatalytic activity of a NiO nanodot-decorated Pd/SiC catalyst for the Suzuki-Miyaura cross-coupling of aryl bromides and chlorides in air under visible light. Journal of Catalysis, 2020, 389, 517-524.	6.2	22
98	The selective deposition of Fe species inside ZSM-5 for the oxidation of cyclohexane to cyclohexanone. Science China Chemistry, 2021, 64, 1088-1095.	8.2	22
99	Application of atomic layer deposition in fabricating high-efficiency electrocatalysts. Chinese Journal of Catalysis, 2020, 41, 227-241.	14.0	21
100	Unparalleled Armour for Aramid Fiber with Excellent UV Resistance in Extreme Environment. Advanced Science, 2021, 8, 2004171.	11.2	21
101	Cu1â^xMgxAl3 spinel solid solution as a sustained release catalyst: One-pot green synthesis and catalytic performance in methanol steam reforming. Fuel, 2021, 284, 119041.	6.4	18
102	Highly efficient conversion of oleic acid to heptadecane without external hydrogen source over atomic layer deposited bimetallic NiPt catalysts. Chemical Engineering Journal, 2020, 390, 124603.	12.7	17
103	Concurrently Achieving High Discharged Energy Density and Efficiency in Composites by Introducing Ultralow Loadings of Core–Shell Structured Graphene@TiO ₂ Nanoboxes. ACS Applied Materials & Interfaces, 2022, 14, 29292-29301.	8.0	17
104	Porous TiO 2 Nanotubes with Spatially Separated Platinum and CoO x Cocatalysts Produced by Atomic Layer Deposition for Photocatalytic Hydrogen Production. Angewandte Chemie, 2017, 129, 834-838.	2.0	16
105	Tuning the selectivity of Pt-catalyzed tandem hydrogenation of nitro compounds via controllable NiO decoration by atomic layer deposition. Catalysis Communications, 2019, 121, 48-52.	3.3	15
106	Controllable n-Fe ₂ 0 ₃ @graphene nanomaterials by ALD applied in an aptasensor with enhanced electrochemical performance for thrombin detection. Dalton Transactions, 2017, 46, 7434-7440.	3.3	14
107	Bottomâ€Up Tailoring of Plasmonic Nanopeapods Making Use of the Periodical Topography of Carbon Nanocoil Templates. Advanced Functional Materials, 2012, 22, 5157-5165.	14.9	13
108	Construct of Carbon Nanotube-Supported Fe2O3 Hybrid Nanozyme by Atomic Layer Deposition for Highly Efficient Dopamine Sensing. Frontiers in Chemistry, 2020, 8, 564968.	3.6	13

#	Article	IF	CITATIONS
109	Control of Stepwise Hg ²⁺ Reduction on Gold to Selectively Tune its Peroxidase and Catalaseâ€Like Activities and the Mechanism. Advanced Materials Interfaces, 2021, 8, 2100086.	3.7	13
110	Self-Assembly of an Antitumor Dipeptide Induced Near-Infrared Fluorescence and Improved Stability for Theranostic Applications. ACS Applied Materials & amp; Interfaces, 2021, 13, 32799-32809.	8.0	13
111	N-doped carbon modified Pt/CNTs synthesized by atomic layer deposition with enhanced activity and stability for methanol electrooxidation. Chinese Journal of Catalysis, 2018, 39, 1038-1043.	14.0	12
112	Amphiphilic confined Pt-based nanocatalysts produced by atomic layer deposition with enhanced catalytic performance for biphasic reactions. Green Chemistry, 2021, 23, 8116-8123.	9.0	11
113	Singleâ€Point Mutant Inverts the Stereoselectivity of a Carbonyl Reductase toward βâ€Ketoesters with Enhanced Activity. Chemistry - A European Journal, 2021, 27, 6283-6294.	3.3	11
114	Improved cycling performance of a silicon anode for lithium ion batteries using carbon nanocoils. RSC Advances, 2014, 4, 40812-40815.	3.6	10
115	Insights into the effect of substrate adsorption behavior over heme-like Fe1/AC single-atom catalyst. Nano Research, 2022, 15, 5970-5976.	10.4	10
116	Encapsulation of Homogeneous Catalysts in Mesoporous Materials Using Diffusion‣imited Atomic Layer Deposition. Angewandte Chemie, 2018, 130, 1103-1107.	2.0	8
117	Encapsulation of atomically dispersed Pt clusters in porous TiO ₂ for semi-hydrogenation of phenylacetylene. Chemical Communications, 2022, 58, 1191-1194.	4.1	7
118	Synthesis of ZIF-8-coated Pt/SiO2 by vapor deposition for alkyne semi-hydrogenation. Journal of Fuel Chemistry and Technology, 2021, 49, 1316-1325.	2.0	6
119	Probing the existing state of Cu(<scp>ii</scp>) in a Cu–Al spinel catalyst using N ₂ O decomposition reaction with the aid of conventional characterizations. Catalysis Science and Technology, 2019, 9, 2993-3001.	4.1	5
120	Tailoring the Microporosity of Polymers of Intrinsic Microporosity for Advanced Gas Separation by Atomic Layer Deposition. Angewandte Chemie, 2021, 133, 18019-18024.	2.0	5
121	Surface isolation of single metal complexes or clusters by a coating sieving layer via atomic layer deposition. Cell Reports Physical Science, 2022, 3, 100787.	5.6	5
122	Superhydrophilic and Underwater Superoleophobic Poly(propylene) Nonwoven Coated with TiO 2 by Atomic Layer Deposition. Advanced Materials Interfaces, 2021, 8, 2001485.	3.7	4
123	Engineering of platinum–oxygen vacancy interfacial sites in confined catalysts for enhanced hydrogenation selectivity. Catalysis Science and Technology, 2022, 12, 2411-2415.	4.1	4
124	Precise regulation of the wettability of Pt/CNTs by atomic layer deposition-based ozone pulse strategy for enhanced catalytic hydrogenation performance in aqueous phase. Carbon, 2022, 188, 385-392.	10.3	3
125	Ultrathin Coating of Confined Pt Nanocatalysts by Atomic Layer Deposition for Enhanced Catalytic Performance in Hydrogenation Reactions. Chemistry - A European Journal, 2016, 22, 8385-8385.	3.3	2
126	Engineering a Carbonyl Reductase as a Potential Tool for the Synthesis of Chiral αâ€Tetralinols. ChemCatChem, 2021, 13, 4625-4633.	3.7	2

#	Article	IF	CITATIONS
127	Hollow Zeolitesâ€Confined Isolated (ZnOH) ⁺ Enable High Selectivity and Stability for Methanol to Aromatics. ChemCatChem, 2022, 14, .	3.7	2
128	Electrochemical deposition of electronically rich Pt single atoms and nanocrystals on porous carbon for enhanced electrocatalysis in strong acids. Sustainable Energy and Fuels, 2022, 6, 1058-1062.	4.9	1
129	Waveguides: Bottom-Up Tailoring of Plasmonic Nanopeapods Making Use of the Periodical Topography of Carbon Nanocoil Templates (Adv. Funct. Mater. 24/2012). Advanced Functional Materials, 2012, 22, 5284-5284.	14.9	Ο
130	Hybrid Materials: Enhanced Catalytic Activity for Methanol Electroâ€oxidation of Uniformly Dispersed Nickel Oxide Nanoparticles—Carbon Nanotube Hybrid Materials (Small 22/2012). Small, 2012, 8, 3540-3540.	10.0	0