Christian J R Coronado

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5060677/publications.pdf

Version: 2024-02-01

45 papers 1,933 citations

331538 21 h-index 254106 43 g-index

46 all docs

46 docs citations

46 times ranked

2400 citing authors

#	Article	IF	CITATIONS
1	Glycerol: Production, consumption, prices, characterization and new trends in combustion. Renewable and Sustainable Energy Reviews, 2013, 27, 475-493.	8.2	744
2	Biodiesel CO2 emissions: A comparison with the main fuels in the Brazilian market. Fuel Processing Technology, 2009, 90, 204-211.	3.7	98
3	Thermochemical equilibrium modeling of biomass downdraft gasifier: Stoichiometric models. Energy, 2014, 66, 189-201.	4.5	75
4	Flammability limits: A review with emphasis on ethanol for aeronautical applications and description of the experimental procedure. Journal of Hazardous Materials, 2012, 241-242, 32-54.	6.5	60
5	Determination of ecological efficiency in internal combustion engines: The use of biodiesel. Applied Thermal Engineering, 2009, 29, 1887-1892.	3.0	58
6	Electricity, hot water and cold water production from biomass. Energetic and economical analysis of the compact system of cogeneration run with woodgas from a small downdraft gasifier. Renewable Energy, 2011, 36, 1861-1868.	4.3	55
7	Experimental investigation on the potential of biogas/ethanol dual-fuel spark-ignition engine for power generation: Combustion, performance and pollutant emission analysis. Applied Energy, 2020, 261, 114438.	5.1	55
8	Thermochemical equilibrium modeling of a biomass downdraft gasifier: Constrained and unconstrained non-stoichiometric models. Energy, 2014, 71, 624-637.	4. 5	53
9	Technical and economic analyses of waste heat energy recovery from internal combustion engines by the Organic Rankine Cycle. Energy Conversion and Management, 2016, 129, 168-179.	4.4	46
10	Ecological impacts from syngas burning in internal combustion engine: Technical and economic aspects. Renewable and Sustainable Energy Reviews, 2011, 15, 5194-5201.	8.2	38
11	Development of a homogeneous charge pre-chamber torch ignition system for an SI engine fuelled with hydrous ethanol. Applied Thermal Engineering, 2019, 152, 261-274.	3.0	38
12	Ecological efficiency in CHP: Biodiesel case. Applied Thermal Engineering, 2010, 30, 458-463.	3.0	37
13	Research on hydrous ethanol stratified lean burn combustion in a DI spark-ignition engine. Applied Thermal Engineering, 2018, 139, 317-324.	3.0	36
14	Combustion, performance and emission analysis of a natural gas-hydrous ethanol dual-fuel spark ignition engine with internal exhaust gas recirculation. Energy Conversion and Management, 2019, 195, 1187-1198.	4.4	35
15	Ethanol as a renewable biofuel: Combustion characteristics and application in engines. Energy, 2022, 257, 124688.	4.5	35
16	Ecological efficiency in glycerol combustion. Applied Thermal Engineering, 2014, 63, 97-104.	3.0	34
17	Flammability limits of hydrated and anhydrous ethanol at reduced pressures in aeronautical applications. Journal of Hazardous Materials, 2014, 280, 174-184.	6. 5	31
18	Multi-objective optimization and exergetic analysis of a low-grade waste heat recovery ORC application on a Brazilian FPSO. Energy Conversion and Management, 2018, 174, 537-551.	4.4	30

#	Article	IF	CITATIONS
19	Biodiesel in South American countries: A review on policies, stages of development and imminent competition with hydrotreated vegetable oil. Renewable and Sustainable Energy Reviews, 2022, 153, 111755.	8.2	30
20	Exergoenvironmental analysis of hydrogen production through glycerol steam reforming. International Journal of Hydrogen Energy, 2021, 46, 1385-1402.	3.8	27
21	Determination of lower flammability limits of C–H–O compounds in air and study of initial temperature dependence. Chemical Engineering Science, 2016, 144, 188-200.	1.9	22
22	Flammability limits temperature dependence of pure compounds in air at atmospheric pressure. Energy, 2017, 118, 414-424.	4.5	22
23	Off-design model of an ORC system for waste heat recovery of an internal combustion engine. Applied Thermal Engineering, 2021, 195, 117188.	3.0	22
24	Estimation of lower flammability limits of CH compounds in air at atmospheric pressure, evaluation of temperature dependence and diluent effect. Journal of Hazardous Materials, 2015, 285, 409-418.	6.5	21
25	Technical and economical evaluation of the photovoltaic system in Brazilian public buildings: A case study for peak and off-peak hours. Energy, 2020, 190, 116282.	4.5	20
26	Evaluation of the potential feedstock for biojet fuel production: Focus in the Brazilian context. Renewable and Sustainable Energy Reviews, 2022, 153, 111716.	8.2	20
27	Economic assessment of hydrogen and electricity cogeneration through steam reforming-SOFC system in the Brazilian biodiesel industry. Journal of Cleaner Production, 2021, 279, 123814.	4.6	18
28	Estimation of upper flammability limits of C–H compounds in air at standard atmospheric pressure and evaluation of temperature dependence. Journal of Hazardous Materials, 2016, 304, 512-521.	6.5	17
29	Difficulties on the determination of the flammability limits of fuel mixtures by the Law of Le Chatelier. Chemical Engineering Research and Design, 2020, 142, 45-55.	2.7	17
30	Method for determination of flammability limits of gaseous compounds diluted with N2 and CO2 in air. Fuel, 2018, 226, 65-80.	3.4	15
31	Exergoenvironmental assessment of hydrogen water footprint via steam reforming in Brazil. Journal of Cleaner Production, 2021, 311, 127577.	4.6	13
32	Development of a thermoeconomic methodology for the optimization of biodiesel production—Part I: Biodiesel plant and thermoeconomic functional diagram. Renewable and Sustainable Energy Reviews, 2013, 23, 138-146.	8.2	12
33	Determination of upper flammability limits of C H O compounds in air at reference temperature and atmospheric pressure. Fuel, 2017, 188, 212-222.	3.4	12
34	Exergoeconomic and Environmental Analysis of a Palm Oil Biorefinery for the Production of Bio-Jet Fuel. Waste and Biomass Valorization, 2021, 12, 5611-5637.	1.8	12
35	Experimental investigation of the performance and emissions of a diesel engine fuelled by blends containing diesel s 10 , pyrolysis oil from used tires and biodiesel from waste cooking oil. Environmental Progress and Sustainable Energy, 2019, 38, 13199.	1.3	11
36	Multi-objective optimization for a small biomass cooling and power cogeneration system using binary mixtures. Applied Thermal Engineering, $2021, 182, 116045$.	3.0	11

#	Article	IF	CITATIONS
37	Development of a thermoeconomic methodology for optimizing biodiesel production. Part II: Manufacture exergetic cost and biodiesel production cost incorporating carbon credits, a Brazilian case study. Renewable and Sustainable Energy Reviews, 2014, 29, 565-572.	8.2	10
38	Experimental assessment of power generation using a compression ignition engine fueled by farnesane $\hat{a} \in A$ renewable diesel from sugarcane. Energy, 2021, 233, 121187.	4. 5	9
39	Design and study of a pure tire pyrolysis oil (TPO) and blended with Brazilian diesel using Y-Jet atomizer. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2019, 41, 1.	0.8	8
40	Prediction of flammability limits for ethanol-air blends by the Kriging regression model and response surfaces. Fuel, 2017, 210, 410-424.	3.4	7
41	Experimental determination of lower flammability limits of Synthesized Iso-Paraffins (SIP), jet fuel and mixtures at atmospheric and reduced pressures with air. Fire Safety Journal, 2021, 121, 103276.	1.4	7
42	Experimental determination of upper flammability limits of synthesized iso-paraffins (SIP), Jet fuel and their mixtures with air at atmospheric and sub-atmospheric pressures. Chemical Engineering Research and Design, 2022, 160, 102-115.	2.7	5
43	A detailed experimental and numerical assessment of the QAV \hat{a} \in 1/anhydrous ethanol blends in their lower flammability limits. Fuel, 2021, 311, 122531.	3.4	4
44	Temperature profile and gas emissions of jet fuel using a low power flameless combustor. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2022, 44, .	0.8	2
45	A review of dual-fuel combustion mode in spark-ignition engines. Journal of the Brazilian Society of Mechanical Sciences and Engineering, $2021,43,1$.	0.8	1