Isabel A Abreu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5060563/publications.pdf Version: 2024-02-01

Isarei A Ardeii

#	Article	IF	CITATIONS
1	Superoxide Dismutases and Superoxide Reductases. Chemical Reviews, 2014, 114, 3854-3918.	47.7	717
2	Superoxide dismutases—a review of the metal-associated mechanistic variations. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2010, 1804, 263-274.	2.3	413
3	The <i>Arabidopsis</i> E3 SUMO Ligase SIZ1 Regulates Plant Growth and Drought Responses. Plant Cell, 2007, 19, 2952-2966.	6.6	316
4	Recent Updates on Salinity Stress in Rice: From Physiological to Molecular Responses. Critical Reviews in Plant Sciences, 2011, 30, 329-377.	5.7	178
5	New allelic variants found in key rice saltâ€tolerance genes: an association study. Plant Biotechnology Journal, 2013, 11, 87-100.	8.3	120
6	The draft genome sequence of cork oak. Scientific Data, 2018, 5, 180069.	5.3	98
7	Rice calciumâ€dependent protein kinase OsCPK17 targets plasma membrane intrinsic protein and sucroseâ€phosphate synthase and is required for a proper cold stress response. Plant, Cell and Environment, 2017, 40, 1197-1213.	5.7	96
8	Coping with abiotic stress: Proteome changes for crop improvement. Journal of Proteomics, 2013, 93, 145-168.	2.4	93
9	OsRMC, a negative regulator of salt stress response in rice, is regulated by two AP2/ERF transcription factors. Plant Molecular Biology, 2013, 82, 439-455.	3.9	73
10	Oxygen detoxification in the strict anaerobic archaeon Archaeoglobus fulgidus: superoxide scavenging by Neelaredoxin. Molecular Microbiology, 2000, 38, 322-334.	2.5	69
11	Nitrite Reductase fromDesulfovibrio desulfuricans(ATCC 27774)— A Heterooligomer Heme Protein with Sulfite Reductase Activity. Biochemical and Biophysical Research Communications, 1996, 224, 611-618.	2.1	62
12	A comprehensive assessment of the transcriptome of cork oak (Quercus suber) through EST sequencing. BMC Genomics, 2014, 15, 371.	2.8	53
13	Rice phytochrome-interacting factor protein OsPIF14 represses OsDREB1B gene expression through an extended N-box and interacts preferentially with the active form of phytochrome B. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2016, 1859, 393-404.	1.9	51
14	Trinucleotide Repeats: A Structural Perspective. Frontiers in Neurology, 2013, 4, 76.	2.4	49
15	Screening for Abiotic Stress Tolerance in Rice: Salt, Cold, and Drought. Methods in Molecular Biology, 2016, 1398, 155-182.	0.9	48
16	XBAT35, a Novel Arabidopsis RING E3 Ligase Exhibiting Dual Targeting of Its Splice Isoforms, Is Involved in Ethylene-Mediated Regulation of Apical Hook Curvature. Molecular Plant, 2012, 5, 1295-1309.	8.3	47
17	Superoxide Reduction Mechanism of Archaeoglobus fulgidus One-Iron Superoxide Reductase. Biochemistry, 2006, 45, 9266-9278.	2.5	45
18	Synergistic Binding of bHLH Transcription Factors to the Promoter of the Maize NADP-ME Gene Used in C4 Photosynthesis Is Based on an Ancient Code Found in the Ancestral C3 State. Molecular Biology and Evolution, 2018, 35, 1690-1705.	8.9	45

ISABEL A ABREU

#	Article	IF	CITATIONS
19	The Mechanism of Superoxide Scavenging byArchaeoglobus fulgidus Neelaredoxin. Journal of Biological Chemistry, 2001, 276, 38995-39001.	3.4	39
20	The rice cold-responsive calcium-dependent protein kinase OsCPK17 is regulated by alternative splicing and post-translational modifications. Biochimica Et Biophysica Acta - Molecular Cell Research, 2018, 1865, 231-246.	4.1	38
21	Theoretical Studies of Manganese and Iron Superoxide Dismutases:Â Superoxide Binding and Superoxide Oxidation. Journal of Physical Chemistry B, 2005, 109, 24502-24509.	2.6	37
22	Isolation and characterization of rice (Oryza sativa L.) E3-ubiquitin ligase OsHOS1 gene in the modulation of cold stress response. Plant Molecular Biology, 2013, 83, 351-363.	3.9	36
23	Superoxide reduction by Archaeoglobus fulgidus desulfoferrodoxin: comparison with neelaredoxin. Journal of Biological Inorganic Chemistry, 2007, 12, 248-256.	2.6	35
24	Rubredoxin acts as an electron donor for neelaredoxin in Archaeoglobus fulgidus. Biochemical and Biophysical Research Communications, 2005, 329, 1300-1305.	2.1	32
25	The Kinetic Mechanism of Manganese-Containing Superoxide Dismutase from <i>Deinococcus radiodurans</i> :  A Specialized Enzyme for the Elimination of High Superoxide Concentrations. Biochemistry, 2008, 47, 2350-2356.	2.5	32
26	SUMOylation of the brain-predominant Ataxin-3 isoform modulates its interaction with p97. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2015, 1852, 1950-1959.	3.8	32
27	A single mutation in the castor Â9-18:0-desaturase changes reaction partitioning from desaturation to oxidase chemistry. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 17220-17224.	7.1	30
28	Dps from <i>Deinococcus radiodurans</i> : oligomeric forms of Dps1 with distinct cellular functions and Dps2 involved in metal storage. FEBS Journal, 2015, 282, 4307-4327.	4.7	30
29	Superoxide scavenging by neelaredoxin: dismutation and reduction activities in anaerobes. Journal of Biological Inorganic Chemistry, 2002, 7, 668-674.	2.6	29
30	Different evolutionary histories of two cation/proton exchanger gene families in plants. BMC Plant Biology, 2013, 13, 97.	3.6	28
31	A novel iron centre in the split-Soret cytochrome c from Desulfovibrio desulfuricans ATCC 27774. Journal of Biological Inorganic Chemistry, 2003, 8, 360-370.	2.6	20
32	BIOCHEMICAL AND BIOPHYSICAL CHARACTERIZATION OF RECOMBINANT YEAST PROTEASOME MATURATION FACTOR UMP1. Computational and Structural Biotechnology Journal, 2013, 7, e201304006.	4.1	20
33	Posttranslational Modification of the NADP-Malic Enzyme Involved in C ₄ Photosynthesis Modulates the Enzymatic Activity during the Day. Plant Cell, 2019, 31, 2525-2539.	6.6	20
34	Chemical Activity of Iron in [2Fe-2S]-Protein Centers and FeS2(100) Surfaces. Journal of Physical Chemistry B, 2005, 109, 2754-2762.	2.6	18
35	Insights into the transcriptional and post-transcriptional regulation of the rice SUMOylation machinery and into the role of two rice SUMO proteases. BMC Plant Biology, 2018, 18, 349.	3.6	18
36	The interplay between Mn and Fe in Deinococcus radiodurans triggers cellular protection during paraquat-induced oxidative stress. Scientific Reports, 2019, 9, 17217.	3.3	18

ISABEL A ABREU

#	Article	IF	CITATIONS
37	Selection of an Appropriate Protein Extraction Method to Study the Phosphoproteome of Maize Photosynthetic Tissue. PLoS ONE, 2016, 11, e0164387.	2.5	16
38	Carbon/nitrogen metabolism and stress response networks – calcium-dependent protein kinases as the missing link?. Journal of Experimental Botany, 2021, 72, 4190-4201.	4.8	13
39	Ssu72 phosphatase is a conserved telomere replication terminator. EMBO Journal, 2019, 38, .	7.8	11
40	Exploring the regulatory levels of SUMOylation to increase crop productivity. Current Opinion in Plant Biology, 2019, 49, 43-51.	7.1	10
41	Exploring the analytical power of the QTOF MS platform to assess monoclonal antibodies quality attributes. PLoS ONE, 2019, 14, e0219156.	2.5	9
42	Goji berries superfood – contributions for the characterisation of proteome and IgE-binding proteins. Food and Agricultural Immunology, 2019, 30, 262-280.	1.4	5
43	Expression, purification and crystallization of MnSOD fromArabidopsis thaliana. Acta Crystallographica Section F, Structural Biology Communications, 2014, 70, 669-672.	0.8	4
44	Genomics of Drought. , 2016, , 85-135.		4
45	Turning the Knobs: The Impact of Post-translational Modifications on Carbon Metabolism. Frontiers in Plant Science, 2021, 12, 781508.	3.6	4
46	Screening for Abiotic Stress Response in Rice. Methods in Molecular Biology, 2022, 2494, 161-194.	0.9	1
47	Corrigendum to: Posttranslational Modification of the NADP-Malic Enzyme Involved in C4 Photosynthesis Modulates the Enzymatic Activity during the Day. Plant Cell, 2022, 34, 698-699.	6.6	0
48	Visualization of a curated L. CDPKs Protein-Protein Interaction Network CDPK-OsPPIN MicroPublication Biology, 2022, 2022, .	0.1	0