
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5060259/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The S1PR2â€CCL2â€BDNFâ€TrkB pathway mediates neuroinflammation and motor incoordination in hyperammonaemia. Neuropathology and Applied Neurobiology, 2022, 48, .	1.8	15
2	Potential Neuroprotective Role of Sugammadex: A Clinical Study on Cognitive Function Assessment in an Enhanced Recovery After Cardiac Surgery Approach and an Experimental Study. Frontiers in Cellular Neuroscience, 2022, 16, 789796.	1.8	5
3	Hyperammonemia Enhances GABAergic Neurotransmission in Hippocampus: Underlying Mechanisms and Modulation by Extracellular cGMP. Molecular Neurobiology, 2022, 59, 3431-3448.	1.9	3
4	Rifaximin Improves Spatial Learning and Memory Impairment in Rats with Liver Damage-Associated Neuroinflammation. Biomedicines, 2022, 10, 1263.	1.4	11
5	A multi-omic study for uncovering molecular mechanisms associated with hyperammonemia-induced cerebellar function impairment in rats. Cell Biology and Toxicology, 2021, 37, 129-149.	2.4	2
6	The Dual Role of the GABAA Receptor in Peripheral Inflammation and Neuroinflammation: A Study in Hyperammonemic Rats. International Journal of Molecular Sciences, 2021, 22, 6772.	1.8	15
7	Rifaximin Prevents T-Lymphocytes and Macrophages Infiltration in Cerebellum and Restores Motor Incoordination in Rats with Mild Liver Damage. Biomedicines, 2021, 9, 1002.	1.4	15
8	Chronic hyperammonemia induces peripheral inflammation that leads to cognitive impairment in rats: Reversed by anti-TNF-α treatment. Journal of Hepatology, 2020, 73, 582-592.	1.8	77
9	Hyperammonemia alters the mismatch negativity in the auditory evoked potential by altering functional connectivity and neurotransmission. Journal of Neurochemistry, 2020, 154, 56-70.	2.1	1
10	Blockade of nitric oxide signalling promotes resilience to the effects of social defeat stress on the conditioned rewarding properties of MDMA in mice. Nitric Oxide - Biology and Chemistry, 2020, 98, 29-32.	1.2	8
11	Sustained hyperammonemia induces TNF-a IN Purkinje neurons by activating the TNFR1-NF-κB pathway. Journal of Neuroinflammation, 2020, 17, 70.	3.1	27
12	A Multiomics Study To Unravel the Effects of Developmental Exposure to Endosulfan in Rats: Molecular Explanation for Sex-Dependent Effects. ACS Chemical Neuroscience, 2019, 10, 4264-4279.	1.7	5
13	Peripheral inflammation induces neuroinflammation that alters neurotransmission and cognitive and motor function in hepatic encephalopathy: Underlying mechanisms and therapeutic implications. Acta Physiologica, 2019, 226, e13270.	1.8	66
14	Bicuculline Reduces Neuroinflammation in Hippocampus and Improves Spatial Learning and Anxiety in Hyperammonemic Rats. Role of Glutamate Receptors. Frontiers in Pharmacology, 2019, 10, 132.	1.6	26
15	P: 56 Evaluation of Cognitive Dysfunction in Animal Models and Relatability to Human Disease. American Journal of Gastroenterology, 2019, 114, S28-S29.	0.2	0
16	Role of <scp>NMDA</scp> and <scp>AMPA</scp> glutamatergic receptors in the effects of social defeat on the rewarding properties of <scp>MDMA</scp> in mice. European Journal of Neuroscience, 2019, 50, 2623-2634.	1.2	18
17	Increasing extracellular cGMP in cerebellum in vivo reduces neuroinflammation, GABAergic tone and motor in-coordination in hyperammonemic rats. Brain, Behavior, and Immunity, 2018, 69, 386-398.	2.0	35
18	Inhibition of γ-Secretase Leads to an Increase in Presenilin-1. Molecular Neurobiology, 2018, 55, 5047-5058.	1.9	19

#	Article	IF	CITATIONS
19	Endosulfan and Cypermethrin Pesticide Mixture Induces Synergistic or Antagonistic Effects on Developmental Exposed Rats Depending on the Analyzed Behavioral or Neurochemical End Points. ACS Chemical Neuroscience, 2018, 9, 369-380.	1.7	17
20	Chronic hyperammonemia alters in opposite ways membrane expression of GluA1 and GluA2 AMPA receptor subunits in cerebellum. Molecular mechanisms involved. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 286-295.	1.8	9
21	Developmental Exposure to Pesticides Alters Motor Activity and Coordination in Rats: Sex Differences and Underlying Mechanisms. Neurotoxicity Research, 2018, 33, 247-258.	1.3	37
22	Restoring the function of the glutamate-nitric oxide –cGMP pathway by treatments acting on different brain targets restores cognitive function in rats with minimal hepatic encephalopathy. European Journal of Molecular and Clinical Medicine, 2017, 2, 63.	0.5	0
23	Sildenafil reduces neuroinflammation in cerebellum, restores <scp>GABA</scp> ergic tone, and improves motor inâ€coordination in rats with hepatic encephalopathy. CNS Neuroscience and Therapeutics, 2017, 23, 386-394.	1.9	43
24	Sex-dependent effects of developmental exposure to different pesticides on spatial learning. The role of induced neuroinflammation in the hippocampus. Food and Chemical Toxicology, 2017, 99, 135-148.	1.8	31
25	Determination of selected neurotoxic insecticides in small amounts of animal tissue utilizing a newly constructed mini-extractor. Analytical and Bioanalytical Chemistry, 2017, 409, 6015-6026.	1.9	2
26	Sildenafil Treatment Eliminates Pruritogenesis and Thermal Hyperalgesia in Rats with Portacaval Shunts. Neurochemical Research, 2017, 42, 788-794.	1.6	0
27	Translational research in hepatic encephalopathy: New diagnostic possibilities and new therapeutic approaches. European Journal of Molecular and Clinical Medicine, 2017, 2, 39.	0.5	2
28	Reducing Peripheral Inflammation with Infliximab Reduces Neuroinflammation and Improves Cognition in Rats with Hepatic Encephalopathy. Frontiers in Molecular Neuroscience, 2016, 9, 106.	1.4	69
29	Extracellular cGMP Modulates Learning Biphasically by Modulating Glycine Receptors, CaMKII and Glutamate-Nitric Oxide-cGMP Pathway. Scientific Reports, 2016, 6, 33124.	1.6	34
30	Infliximab reduces peripheral inflammation, neuroinflammation, and extracellular GABA in the cerebellum and improves learning and motor coordination in rats with hepatic encephalopathy. Journal of Neuroinflammation, 2016, 13, 245.	3.1	63
31	In vivo administration of extracellular cGMP normalizes TNF-α and membrane expression of AMPA receptors in hippocampus and spatial reference memory but not IL-1β, NMDA receptors in membrane and working memory in hyperammonemic rats. Brain, Behavior, and Immunity, 2016, 57, 360-370.	2.0	29
32	Extracellular Protein Kinase A Modulates Intracellular Calcium/Calmodulin-Dependent Protein Kinase II, Nitric Oxide Synthase, and the Glutamate–Nitric Oxide–cGMP Pathway in Cerebellum. Differential Effects in Hyperammonemia. ACS Chemical Neuroscience, 2016, 7, 1753-1759.	1.7	7
33	Hyperammonemia induces glial activation, neuroinflammation and alters neurotransmitter receptors in hippocampus, impairing spatial learning: reversal by sulforaphane. Journal of Neuroinflammation, 2016, 13, 41.	3.1	99
34	Neuroinflammation increases GABAergic tone and impairs cognitive and motor function in hyperammonemia by increasing GAT-3 membrane expression. Reversal by sulforaphane by promoting M2 polarization of microglia. Journal of Neuroinflammation, 2016, 13, 83.	3.1	92
35	Modulation of GABAA receptors by neurosteroids. A new concept to improve cognitive and motor alterations in hepatic encephalopathy. Journal of Steroid Biochemistry and Molecular Biology, 2016, 160, 88-93.	1.2	5
36	Sildenafil reduces neuroinflammation and restores spatial learning in rats with hepatic encephalopathy: underlying mechanisms. Journal of Neuroinflammation, 2015, 12, 195.	3.1	68

#	Article	IF	CITATIONS
37	GR3027 antagonizes GABA _A receptor-potentiating neurosteroids and restores spatial learning and motor coordination in rats with chronic hyperammonemia and hepatic encephalopathy. American Journal of Physiology - Renal Physiology, 2015, 309, G400-G409.	1.6	53
38	Gender Differences in Spatial Learning, Synaptic Activity, and Long-Term Potentiation in the Hippocampus in Rats: Molecular Mechanisms. ACS Chemical Neuroscience, 2015, 6, 1420-1427.	1.7	58
39	Roles of the NMDA Receptor and EAAC1 Transporter in the Modulation of Extracellular Glutamate by Low and High Affinity AMPA Receptors in the Cerebellum in Vivo: Differential Alteration in Chronic Hyperammonemia. ACS Chemical Neuroscience, 2015, 6, 1913-1921.	1.7	20
40	Interplay between glutamatergic and GABAergic neurotransmission alterations in cognitive and motor impairment in minimal hepatic encephalopathy. Neurochemistry International, 2015, 88, 15-19.	1.9	42
41	Neuroinflammation and neurological alterations in chronic liver diseases. Neuroimmunology and Neuroinflammation, 2015, 2, 138.	1.4	23
42	Rats with minimal hepatic encephalopathy show reduced cGMP-dependent protein kinase activity in hypothalamus correlating with circadian rhythms alterations. Chronobiology International, 2015, 32, 966-79.	0.9	6
43	Cerebral oedema is not responsible for motor or cognitive deficits in rats with hepatic encephalopathy. Liver International, 2014, 34, 379-387.	1.9	26
44	Presence of diadenosine polyphosphates in microdialysis samples from rat cerebellum in vivo: effect of mild hyperammonemia on their receptors. Purinergic Signalling, 2014, 10, 349-356.	1.1	6
45	Chronic hyperammonemia, glutamatergic neurotransmission and neurological alterations. Metabolic Brain Disease, 2013, 28, 151-154.	1.4	31
46	Impaired release of corticosterone from adrenals contributes to impairment of circadian rhythms of activity in hyperammonemic rats. Archives of Biochemistry and Biophysics, 2013, 536, 164-170.	1.4	12
47	Gender differential effects of developmental exposure to methyl-mercury, polychlorinated biphenyls 126 or 153, or its combinations on motor activity and coordination. Toxicology, 2013, 311, 61-68.	2.0	31
48	Progressive reduction of sleep time and quality in rats with hepatic encephalopathy caused by portacaval shunts. Neuroscience, 2012, 201, 199-208.	1.1	21
49	Differential effects of chronic hyperammonemia on modulation of the glutamate–nitric oxide–cGMP pathway by metabotropic glutamate receptor 5 and low and high affinity AMPA receptors in cerebellum in vivo. Neurochemistry International, 2012, 61, 63-71.	1.9	16
50	Insight into the neuroproteomics effects of the food-contaminant non-dioxin like polychlorinated biphenyls. Journal of Proteomics, 2012, 75, 2417-2430.	1.2	28
51	Exploratory investigation on nitro- and phospho-proteome cerebellum changes in hyperammonemia and hepatic encephalopathy rat models. Metabolic Brain Disease, 2012, 27, 37-49.	1.4	4
52	Metabotropic glutamate receptor 5 modulates the nitric oxide-cGMP pathway in cerebellum in vivo through activation of AMPA receptors. Neurochemistry International, 2011, 58, 599-604.	1.9	19
53	p38 MAP kinase is a therapeutic target for hepatic encephalopathy in rats with portacaval shunts. Gut, 2011, 60, 1572-1579.	6.1	63
54	Cerebellum Proteomics Addressing the Cognitive Deficit of Rats Perinatally Exposed to the Food-Relevant Polychlorinated Biphenyl 138. Toxicological Sciences, 2011, 123, 170-179.	1.4	14

#	Article	IF	CITATIONS
55	Chronic hyperammonemia alters the circadian rhythms of corticosteroid hormone levels and of motor activity in rats. Journal of Neuroscience Research, 2010, 88, 1605-1614.	1.3	21
56	Polychlorinated Biphenyls PCB 52, PCB 180, and PCB 138 Impair the Glutamateâ^'Nitric Oxideâ^'cGMP Pathway in Cerebellar Neurons in Culture by Different Mechanisms. Chemical Research in Toxicology, 2010, 23, 813-820.	1.7	35
57	Cyclic GMP pathways in hepatic encephalopathy. Neurological and therapeutic implications. Metabolic Brain Disease, 2010, 25, 39-48.	1.4	36
58	Metabotropic glutamate receptor 5, but not 1, modulates NMDA receptor-mediated activation of neuronal nitric oxide synthase. Neurochemistry International, 2010, 56, 535-545.	1.9	11
59	Neuroinflammation contributes to hypokinesia in rats with hepatic encephalopathy: Ibuprofen restores its motor activity. Journal of Neuroscience Research, 2009, 87, 1369-1374.	1.3	66
60	Increasing the function of the glutamateâ€nitric oxideâ€cyclic guanosine monophosphate pathway increases the ability to learn a Yâ€maze task. Journal of Neuroscience Research, 2009, 87, 2351-2355.	1.3	35
61	Glutamatergic and gabaergic neurotransmission and neuronal circuits in hepatic encephalopathy. Metabolic Brain Disease, 2009, 24, 69-80.	1.4	120
62	Polychlorinated Biphenyls PCB 153 and PCB 126 Impair the Glutamate–Nitric Oxide–cGMP Pathway in Cerebellar Neurons in Culture by Different Mechanisms. Neurotoxicity Research, 2009, 16, 97-105.	1.3	17
63	Mechanisms of cognitive alterations in hyperammonemia and hepatic encephalopathy: Therapeutical implications. Neurochemistry International, 2009, 55, 106-112.	1.9	67
64	[191] HYPOLOCOMOTION IN RATS WITH CHRONIC LIVER FAILURE IS DUE TO INCREASED GLUTAMATE AND ACTIVATION OF METABOTROPIC GLUTAMATE RECEPTORS IN SUBSTANTIA NIGRA. Journal of Hepatology, 2007, 46, S81.	1.8	0
65	Prenatal exposure to polybrominated diphenylether 99 enhances the function of the glutamate?nitric oxide?cGMP pathway in brain in�vivo and in cultured neurons. European Journal of Neuroscience, 2007, 25, 373-379.	1.2	27
66	Motor activity is modulated via different neuronal circuits in rats with chronic liver failure than in normal rats. European Journal of Neuroscience, 2007, 25, 2112-2122.	1.2	37
67	Chronic liver failure in rats impairs glutamatergic synaptic transmission and long-term potentiation in hippocampus and learning ability. European Journal of Neuroscience, 2007, 25, 2103-2111.	1.2	67
68	NMDA receptors in hyperammonemia and hepatic encephalopathy. Metabolic Brain Disease, 2007, 22, 321-335.	1.4	70
69	Mechanisms of developmental neurotoxicity: Molecular and behavioral correlates. Toxicology Letters, 2006, 164, S24-S25.	0.4	Ο
70	Hypolocomotion in rats with chronic liver failure is due to increased glutamate and activation of metabotropic glutamate receptors in substantia nigra. Journal of Hepatology, 2006, 45, 654-661.	1.8	55
71	Role of extracellular cGMP and of hyperammonemia in the impairment of learning in rats with chronic hepatic failure. Neurochemistry International, 2006, 48, 441-446.	1.9	27
72	Modulation of NMDA receptors by AKT kinase. Neurochemistry International, 2006, 49, 351-358.	1.9	25

#	Article	IF	CITATIONS
73	Modulation of NMDA receptors in the cerebellum. 1. Properties of the NMDA receptor that modulate its function. Cerebellum, 2005, 4, 154-161.	1.4	61
74	Modulation of NMDA receptors in the cerebellum. II. Signaling pathways and physiological modulators regulating NMDA receptor function. Cerebellum, 2005, 4, 162-170.	1.4	36
75	Restoration of learning ability in hyperammonemic rats by increasing extracellular cGMP in brain. Brain Research, 2005, 1036, 115-121.	1.1	106
76	Altered Modulation of Motor Activity by Group I Metabotropic Glutamate Receptors in the Nucleus Accumbens in Hyperammonemic Rats. Metabolic Brain Disease, 2005, 20, 347-358.	1.4	8
77	Chronic exposure to ammonia alters the modulation of phosphorylation of microtubule-associated protein 2 by metabotropic glutamate receptors 1 and 5 in cerebellar neurons in culture. Neuroscience, 2005, 133, 185-191.	1.1	15
78	Modulation of NMDA receptor function by cyclic AMP in cerebellar neurones in culture. Journal of Neurochemistry, 2004, 91, 591-599.	2.1	20
79	Sequential activation of soluble guanylate cyclase, protein kinase G and cGMP-degrading phosphodiesterase is necessary for proper induction of long-term potentiation in CA1 of hippocampus. Neurochemistry International, 2004, 45, 895-901.	1.9	36
80	Chronic hyperammonemia alters motor and neurochemical responses to activation of group i metabotropic glutamate receptors in the nucleus accumbens in rats in vivo. Neurobiology of Disease, 2003, 14, 380-390.	2.1	42
81	Glutamine synthetase activity and glutamine content in brain: modulation by NMDA receptors and nitric oxide. Neurochemistry International, 2003, 43, 493-499.	1.9	138
82	Ammonia prevents glutamate-induced but not low K+-induced apoptosis in cerebellar neurons in culture. Neuroscience, 2003, 117, 899-907.	1.1	16
83	Chronic hyperammonemia alters protein phosphorylation and glutamate receptor-associated signal transduction in brain. Neurochemistry International, 2002, 41, 103-108.	1.9	13
84	Carnitine prevents NMDA receptor-mediated activation of MAP-kinase and phosphorylation of microtubule-associated protein 2 in cerebellar neurons in culture. Brain Research, 2002, 947, 50-56.	1.1	13
85	Prenatal Exposure to Aluminum Reduces Expression of Neuronal Nitric Oxide Synthase and of Soluble Guanylate Cyclase and Impairs Glutamatergic Neurotransmission in Rat Cerebellum. Journal of Neurochemistry, 2002, 73, 712-718.	2.1	41
86	Chronic Exposure to Ammonia Alters Pathways Modulating Phosphorylation of Microtubule-Associated Protein 2 in Cerebellar Neurons in Culture. Journal of Neurochemistry, 2002, 73, 2555-2562.	2.1	29
87	Prevention of ammonia and glutamate neurotoxicity by carnitine: molecular mechanisms. Metabolic Brain Disease, 2002, 17, 389-397.	1.4	23
88	Role of nitric oxide and cyclic GMP in glutamate-induced neuronal death. Neurotoxicity Research, 2001, 3, 179-188.	1.3	21
89	Aluminium impairs the glutamate-nitric oxide-cGMP pathway in cultured neurons and in rat brain in vivo: molecular mechanisms and implications for neuropathology. Journal of Inorganic Biochemistry, 2001, 87, 63-69.	1.5	59
90	NMDA-induced phosphorylation of the microtubule-associated protein MAP-2 is mediated by activation of nitric oxide synthase and MAP kinase. European Journal of Neuroscience, 2001, 13, 1283-1291.	1.2	26

MARTA LLANSOLA

#	Article	IF	CITATIONS
91	l²-Amyloid-induced activation of Caspase-3 in primary cultures of rat neurons. Mechanisms of Ageing and Development, 2000, 119, 63-67.	2.2	67
92	Prevention of glutamate neurotoxicity in cultured neurons by 3,4-dihydro-6-hydroxy-7-methoxy-2,2-dimethyl-1(2H)-benzopyran (CR-6), a scavenger of nitric oxide. Biochemical Pharmacology, 1999, 58, 255-261.	2.0	19
93	Role of cyclic GMP in glutamate neurotoxicity in primary cultures of cerebellar neurons. Neuropharmacology, 1999, 38, 1883-1891.	2.0	59
94	Carnitine inhibits hydrolysis of inositol phospholipids induced by activation of metabotropic receptors. Neurochemical Research, 1998, 23, 1533-1537.	1.6	4
95	Carbachol-induced hydrolysis of phospholipids in hippocampal slices may be mediated in part by subsequent activation of metabotropic glutamate receptors. Neurochemical Research, 1998, 23, 913-918.	1.6	5
96	Chronic hyperammonemia impairs the glutamate-nitric oxide-cyclic GMP pathway in cerebellar neurons in culture and in the ratin vivo. European Journal of Neuroscience, 1998, 10, 3201-3209.	1.2	166
97	Nicotine prevents glutamate-induced proteolysis of the microtubule-associated protein MAP-2 and glutamate neurotoxicity in primary cultures of cerebellar neurons. Neuropharmacology, 1998, 37, 847-857.	2.0	85
98	Glutamate and Muscarinic Receptors in the Molecular Mechanisms of Acute Ammonia Toxicity and of Its Prevention. Advances in Experimental Medicine and Biology, 1997, 420, 45-56.	0.8	23