Paul E Smith

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5060145/publications.pdf Version: 2024-02-01

ΡΛΙΙΙ Ε **Γ**ΜΙΤΗ

#	Article	IF	CITATIONS
1	Kirkwood–Buff-Derived Force Field for Peptides and Proteins: Applications of KBFF20. Journal of Chemical Theory and Computation, 2021, 17, 2991-3009.	5.3	6
2	Kirkwood–Buff-Derived Force Field for Peptides and Proteins: Philosophy and Development of KBFF20. Journal of Chemical Theory and Computation, 2021, 17, 2964-2990.	5.3	14
3	Gas or Liquid? The Supercritical Behavior of Pure Fluids. Journal of Physical Chemistry B, 2019, 123, 6554-6563.	2.6	19
4	Classical harmonic model for the behavior of pure fluids at the critical point. Physical Chemistry Chemical Physics, 2019, 21, 8004-8014.	2.8	2
5	A Kirkwood-Buff derived force field for alkaline earth halide salts. Journal of Chemical Physics, 2018, 148, 222828.	3.0	21
6	Experimental investigation of triplet correlation approximations for fluid water. Fluid Phase Equilibria, 2018, 470, 38-50.	2.5	0
7	Gaussian and non-Gaussian fluctuations in pure classical fluids. Journal of Chemical Physics, 2017, 146, 094509.	3.0	7
8	Fluctuation solution theory of pure fluids. Journal of Chemical Physics, 2017, 146, .	3.0	11
9	How Osmolytes Counteract Pressure Denaturation on a Molecular Scale. ChemPhysChem, 2017, 18, 2243-2249.	2.1	13
10	Rationally designed peptide nanosponges for cell-based cancer therapy. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 2555-2564.	3.3	14
11	Simulated pressure denaturation thermodynamics of ubiquitin. Biophysical Chemistry, 2017, 231, 135-145.	2.8	6
12	To Polarize or Not to Polarize? Charge-on-Spring versus KBFF Models for Water and Methanol Bulk and Vapor–Liquid Interfacial Mixtures. Journal of Chemical Theory and Computation, 2016, 12, 2373-2387.	5.3	15
13	Experimental triplet and quadruplet fluctuation densities and spatial distribution function integrals for liquid mixtures. Journal of Chemical Physics, 2015, 142, 094504.	3.0	8
14	Preferential Solvation in Binary and Ternary Mixtures. Journal of Physical Chemistry B, 2015, 119, 15706-15717.	2.6	22
15	Experimental triplet and quadruplet fluctuation densities and spatial distribution function integrals for pure liquids. Journal of Chemical Physics, 2015, 142, 044502.	3.0	9
16	Particle and Energy Pair and Triplet Correlations in Liquids and Liquid Mixtures from Experiment and Simulation. Journal of Physical Chemistry B, 2015, 119, 7761-7777.	2.6	15
17	Infinitely Dilute Partial Molar Properties of Proteins from Computer Simulation. Journal of Physical Chemistry B, 2014, 118, 12844-12854.	2.6	11
18	Local Fluctuations in Solution: Theory and Applications. Advances in Chemical Physics, 2013, 153, 311-372.	0.3	18

PAUL E SMITH

#	Article	IF	CITATIONS
19	Fluctuation Solution Theory. , 2013, , 1-34.		13
20	Theory and Simulation of Multicomponent Osmotic Systems. Journal of Chemical Theory and Computation, 2012, 8, 3493-3503.	5.3	20
21	A Kirkwood–Buff force field for the aromatic amino acids. Physical Chemistry Chemical Physics, 2011, 13, 18154.	2.8	39
22	A Kirkwood-Buff Derived Force Field for Aqueous Alkali Halides. Journal of Chemical Theory and Computation, 2011, 7, 1369-1380.	5.3	128
23	Fluctuation theory of molecular association and conformational equilibria. Journal of Chemical Physics, 2011, 135, 014502.	3.0	20
24	Local fluctuations in solution mixtures. Journal of Chemical Physics, 2011, 135, 044506.	3.0	23
25	The flexible connection of the Nâ€ŧerminal domain in ClpB supports substrate binding and controls the aggregate reactivation efficiency. FASEB Journal, 2011, 25, 907.7.	0.5	Ο
26	The effect of urea on the morphology of NaCl crystals: A combined theoretical and simulation study. Fluid Phase Equilibria, 2010, 290, 36-42.	2.5	15
27	Developing force fields from the microscopic structure of solutions. Fluid Phase Equilibria, 2010, 290, 43-47.	2.5	53
28	Kirkwood–Buff integrals for ideal solutions. Journal of Chemical Physics, 2010, 132, 164501.	3.0	25
29	Kirkwood–Buff theory of molecular and protein association, aggregation, and cellular crowding. Journal of Chemical Physics, 2009, 131, 165101.	3.0	39
30	A Kirkwoodâ^'Buff Derived Force Field for Thiols, Sulfides, and Disulfides. Journal of Physical Chemistry B, 2009, 113, 12306-12315.	2.6	27
31	Recent Applications of Kirkwood–Buff Theory to Biological Systems. Cell Biochemistry and Biophysics, 2008, 50, 1-22.	1.8	199
32	Theory and Computer Simulation of Solute Effects on the Surface Tension of Liquids. Journal of Physical Chemistry B, 2008, 112, 8975-8984.	2.6	29
33	On the Theory of Solute Solubility in Mixed Solvents. Journal of Physical Chemistry B, 2008, 112, 7875-7884.	2.6	44
34	On the Kirkwood–Buff inversion procedure. Journal of Chemical Physics, 2008, 129, 124509.	3.0	50
35	Kirkwood–Buff theory of four and higher component mixtures. Journal of Chemical Physics, 2008, 128, 244511.	3.0	21
36	Preferential interaction parameters in biological systems by Kirkwood–Buff theory and computer simulation. Fluid Phase Equilibria, 2007, 256, 14-19.	2.5	53

PAUL E SMITH

#	Article	IF	CITATIONS
37	Chemical Potential Derivatives and Preferential Interaction Parameters in Biological Systems from Kirkwood-Buff Theory. Biophysical Journal, 2006, 91, 849-856.	0.5	107
38	Equilibrium Dialysis Data and the Relationships between Preferential Interaction Parameters for Biological Systems in Terms of Kirkwoodâ^'Buff Integrals. Journal of Physical Chemistry B, 2006, 110, 2862-2868.	2.6	59
39	A Kirkwood-Buff derived force field for amides. Journal of Computational Chemistry, 2006, 27, 1477-1485.	3.3	69
40	Protein volume changes on cosolvent denaturation. Biophysical Chemistry, 2005, 113, 299-302.	2.8	16
41	A Kirkwoodâ `Buff Derived Force Field for Methanol and Aqueous Methanol Solutions. Journal of Physical Chemistry B, 2005, 109, 15080-15086.	2.6	110
42	A Kirkwood-Buff derived force field for the simulation of aqueous guanidinium chloride solutions. Journal of Chemical Physics, 2004, 121, 2180-2186.	3.0	78
43	Cosolvent Interactions with Biomolecules:  Relating Computer Simulation Data to Experimental Thermodynamic Data. Journal of Physical Chemistry B, 2004, 108, 18716-18724.	2.6	113
44	A Combined Simulation and Kirkwoodâ^'Buff Approach to Quantify Cosolvent Effects on the Conformational Preferences of Peptides in Solution. Journal of Physical Chemistry B, 2004, 108, 7382-7388.	2.6	47
45	Local Chemical Potential Equalization Model for Cosolvent Effects on Biomolecular Equilibria. Journal of Physical Chemistry B, 2004, 108, 16271-16278.	2.6	32
46	Modeling and simulation of the human \hat{l} opioid receptor. Protein Science, 2004, 13, 1997-2008.	7.6	23
47	A Kirkwood–Buff derived force field for sodium chloride in water. Journal of Chemical Physics, 2003, 119, 11342-11349.	3.0	199
48	The Effects of Internal Water Molecules on the Structure and Dynamics of Chymotrypsin Inhibitor 2. Journal of Physical Chemistry B, 2003, 107, 1395-1402.	2.6	3
49	Kirkwood–Buff derived force field for mixtures of acetone and water. Journal of Chemical Physics, 2003, 118, 10663-10670.	3.0	131
50	A Kirkwoodâ ''Buff Derived Force Field for Mixtures of Urea and Water. Journal of Physical Chemistry B, 2003, 107, 3891-3898.	2.6	227
51	Cavity formation and preferential interactions in urea solutions: Dependence on urea aggregation. Journal of Chemical Physics, 2003, 118, 5901-5910.	3.0	46
52	Molecular Association in Solution:  A Kirkwoodâ^'Buff Analysis of Sodium Chloride, Ammonium Sulfate, Guanidinium Chloride, Urea, and 2,2,2-Trifluoroethanol in Water. Journal of Physical Chemistry B, 2002, 106, 1491-1500.	2.6	120
53	A conformational analysis of leucine enkephalin as a function of pH. Biopolymers, 2002, 64, 177-188.	2.4	21
54	Properties of 2,2,2-trifluoroethanol and water mixtures. Journal of Chemical Physics, 2001, 114, 426.	3.0	100

PAUL E SMITH

#	Article	IF	CITATIONS
55	A comparison of the properties of 2,2,2-trifluoroethanol and 2,2,2-trifluoroethanol/water mixtures using different force fields. Journal of Chemical Physics, 2001, 115, 5521-5530.	3.0	93
56	Preferential Interactions of Cosolvents with Hydrophobic Solutes. Journal of Physical Chemistry B, 2001, 105, 11513-11522.	2.6	80
57	Conformations of nicotinamide adenine dinucleotide (NAD+) in various environments. , 2000, 13, 27-34.		27
58	Single-Molecule Imaging Revealing the Deformation-Induced Formation of a Molecular Polymer Blend. Journal of Physical Chemistry B, 2000, 104, 5221-5224.	2.6	27
59	Molecular Dynamics Simulations of the Properties of Cosolvent Solutions. Journal of Physical Chemistry B, 2000, 104, 5854-5864.	2.6	66
60	The alanine dipeptide free energy surface in solution. Journal of Chemical Physics, 1999, 111, 5568-5579.	3.0	123
61	Computer Simulation of Cosolvent Effects on Hydrophobic Hydration. Journal of Physical Chemistry B, 1999, 103, 525-534.	2.6	102
62	On the Presence of Rotational Ewald Artifacts in the Equilibrium and Dynamical Properties of a Zwitterionic Tetrapeptide in Aqueous Solution. Journal of Physical Chemistry B, 1997, 101, 3886-3890.	2.6	46
63	A simple two-dimensional representation for the common secondary structural elements of polypeptides and proteins. , 1997, 27, 227-233.		7
64	Ewald artifacts in liquid state molecular dynamics simulations. Journal of Chemical Physics, 1996, 105, 4289-4293.	3.0	95
65	Structure and stability of a model pyrimidine-purine-purine DNA triple helix with a GC.cntdot.T mismatch by simulation. Biochemistry, 1995, 34, 16269-16278.	2.5	30
66	A generalized reaction field method for molecular dynamics simulations. Journal of Chemical Physics, 1995, 102, 5451-5459.	3.0	1,293
67	Consistent dielectric properties of the simple point charge and extended simple point charge water models at 277 and 300 K. Journal of Chemical Physics, 1994, 100, 3169-3174.	3.0	201
68	Predictions of free energy differences from a single simulation of the initial state. Journal of Chemical Physics, 1994, 100, 577-585.	3.0	72
69	Modeling Solvent in Biomolecular Systems. The Journal of Physical Chemistry, 1994, 98, 9700-9711.	2.9	144
70	Translational and Rotational Diffusion of Proteins. Journal of Molecular Biology, 1994, 236, 629-636.	4.2	80
71	Peptides in ionic solutions: a simulation study of a bis(penicillamine) enkephalin in sodium acetate solution. Journal of the American Chemical Society, 1993, 115, 7493-7498.	13.7	33
72	Amino acid side-chain populations in aqueous and saline solution: Bis-penicillamine enkephalin. Biopolymers, 1992, 32, 1623-1629.	2.4	17

#	Article	IF	CITATIONS
73	Effects of salt on the structure and dynamics of the bis(penicillamine) enkephalin zwitterion: a simulation study. Journal of the American Chemical Society, 1991, 113, 6029-6037.	13.7	88
74	Peptides in ionic solutions: A comparison of the Ewald and switching function techniques. Journal of Chemical Physics, 1991, 95, 8430-8441.	3.0	156