## Elena V Shevchenko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5060094/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Prospects of Colloidal Nanocrystals for Electronic and Optoelectronic Applications. Chemical Reviews, 2010, 110, 389-458.                                                                                                                | 47.7 | 3,708     |
| 2  | Structural diversity in binary nanoparticle superlattices. Nature, 2006, 439, 55-59.                                                                                                                                                     | 27.8 | 1,956     |
| 3  | Thiol-Capping of CdTe Nanocrystals:  An Alternative to Organometallic Synthetic Routes. Journal of<br>Physical Chemistry B, 2002, 106, 7177-7185.                                                                                        | 2.6  | 1,485     |
| 4  | Seeded Growth of Highly Luminescent CdSe/CdS Nanoheterostructures with Rod and Tetrapod<br>Morphologies. Nano Letters, 2007, 7, 2951-2959.                                                                                               | 9.1  | 717       |
| 5  | Determination of Nanocrystal Sizes:  A Comparison of TEM, SAXS, and XRD Studies of Highly<br>Monodisperse CoPt3 Particles. Langmuir, 2005, 21, 1931-1936.                                                                                | 3.5  | 626       |
| 6  | Quasicrystalline order in self-assembled binary nanoparticle superlattices. Nature, 2009, 461, 964-967.                                                                                                                                  | 27.8 | 551       |
| 7  | Colloidal Synthesis and Self-Assembly of CoPt3 Nanocrystals. Journal of the American Chemical Society, 2002, 124, 11480-11485.                                                                                                           | 13.7 | 533       |
| 8  | Synergism in binary nanocrystal superlattices leads to enhanced p-type conductivity in self-assembled<br>PbTe/Ag2Te thin films. Nature Materials, 2007, 6, 115-121.                                                                      | 27.5 | 498       |
| 9  | Study of Nucleation and Growth in the Organometallic Synthesis of Magnetic Alloy Nanocrystals:  The<br>Role of Nucleation Rate in Size Control of CoPt3 Nanocrystals. Journal of the American Chemical<br>Society, 2003, 125, 9090-9101. | 13.7 | 484       |
| 10 | Structural Characterization of Self-Assembled Multifunctional Binary Nanoparticle Superlattices.<br>Journal of the American Chemical Society, 2006, 128, 3620-3637.                                                                      | 13.7 | 452       |
| 11 | Hollow Iron Oxide Nanoparticles for Application in Lithium Ion Batteries. Nano Letters, 2012, 12, 2429-2435.                                                                                                                             | 9.1  | 369       |
| 12 | Dipoleâ^'Dipole Interactions in Nanoparticle Superlattices. Nano Letters, 2007, 7, 1213-1219.                                                                                                                                            | 9.1  | 316       |
| 13 | Gold/Iron Oxide Core/Hollowâ€5hell Nanoparticles. Advanced Materials, 2008, 20, 4323-4329.                                                                                                                                               | 21.0 | 308       |
| 14 | Vacancy Coalescence during Oxidation of Iron Nanoparticles. Journal of the American Chemical<br>Society, 2007, 129, 10358-10360.                                                                                                         | 13.7 | 298       |
| 15 | Quantum Dot Chemiluminescence. Nano Letters, 2004, 4, 693-698.                                                                                                                                                                           | 9.1  | 275       |
| 16 | Self-Assembled Binary Superlattices of CdSe and Au Nanocrystals and Their Fluorescence Properties.<br>Journal of the American Chemical Society, 2008, 130, 3274-3275.                                                                    | 13.7 | 197       |
| 17 | Heterogeneous nucleation and shape transformation of multicomponent metallicÂnanostructures.<br>Nature Materials, 2015, 14, 215-223.                                                                                                     | 27.5 | 187       |
| 18 | The Role of Order, Nanocrystal Size, and Capping Ligands in the Collective Mechanical Response of<br>Three-Dimensional Nanocrystal Solids. Journal of the American Chemical Society, 2010, 132, 8953-8960.                               | 13.7 | 157       |

Elena V Shevchenko

| #  | Article                                                                                                                                                                                                                                | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Capping Ligands as Selectivity Switchers in Hydrogenation Reactions. Nano Letters, 2012, 12, 5382-5388.                                                                                                                                | 9.1  | 146       |
| 20 | Size-Dependent Multiple Twinning in Nanocrystal Superlattices. Journal of the American Chemical Society, 2010, 132, 289-296.                                                                                                           | 13.7 | 134       |
| 21 | Intercalation of Sodium Ions into Hollow Iron Oxide Nanoparticles. Chemistry of Materials, 2013, 25, 245-252.                                                                                                                          | 6.7  | 104       |
| 22 | Using Shape to Control Photoluminescence from CdSe/CdS Core/Shell Nanorods. Journal of Physical Chemistry Letters, 2011, 2, 1469-1475.                                                                                                 | 4.6  | 91        |
| 23 | Mechanical Properties of Face-Centered Cubic Supercrystals of Nanocrystals. Nano Letters, 2010, 10, 2363-2367.                                                                                                                         | 9.1  | 86        |
| 24 | Sequential Infiltration Synthesis for the Design of Low Refractive Index Surface Coatings with Controllable Thickness. ACS Nano, 2017, 11, 2521-2530.                                                                                  | 14.6 | 84        |
| 25 | "Magnet-in-the-Semiconductor―FePtâ`'PbS and FePtâ`'PbSe Nanostructures: Magnetic Properties, Charge<br>Transport, and Magnetoresistance. Journal of the American Chemical Society, 2010, 132, 6382-6391.                               | 13.7 | 80        |
| 26 | High-Pressure Structural Stability and Elasticity of Supercrystals Self-Assembled from Nanocrystals.<br>Nano Letters, 2011, 11, 579-588.                                                                                               | 9.1  | 76        |
| 27 | Study of Nucleation and Growth Mechanism of the Metallic Nanodumbbells. Journal of the American Chemical Society, 2012, 134, 4384-4392.                                                                                                | 13.7 | 70        |
| 28 | In Situ Optical and Structural Studies on Photoluminesence Quenching in CdSe/CdS/Au<br>Heterostructures. Journal of the American Chemical Society, 2014, 136, 2342-2350.                                                               | 13.7 | 66        |
| 29 | Comparison of Structural Behavior of Nanocrystals in Randomly Packed Films and Long-Range<br>Ordered Superlattices by Time-Resolved Small Angle X-ray Scattering. Journal of the American<br>Chemical Society, 2009, 131, 16386-16388. | 13.7 | 61        |
| 30 | Binary Transition-Metal Oxide Hollow Nanoparticles for Oxygen Evolution Reaction. ACS Applied Materials & Materials & Amp; Interfaces, 2018, 10, 24715-24724.                                                                          | 8.0  | 60        |
| 31 | Insulator-to-Metal Transition in Nanocrystal Assemblies Driven by in Situ Mild Thermal Annealing.<br>Nano Letters, 2004, 4, 1289-1293.                                                                                                 | 9.1  | 52        |
| 32 | Revealing the Effects of the Non-solvent on the Ligand Shell of Nanoparticles and Their Crystallization. Journal of the American Chemical Society, 2019, 141, 16651-16662.                                                             | 13.7 | 35        |
| 33 | Controlling the spatial location of photoexcited electrons in semiconductor CdSe/CdS core/shell nanorods. Physical Review B, 2013, 87, .                                                                                               | 3.2  | 31        |
| 34 | Strain-Driven Stacking Faults in CdSe/CdS Core/Shell Nanorods. Journal of Physical Chemistry Letters, 2018, 9, 1900-1906.                                                                                                              | 4.6  | 30        |
| 35 | Probing the Surface of Transition-Metal Nanocrystals by Chemiluminesence. Journal of the American Chemical Society, 2010, 132, 9102-9110.                                                                                              | 13.7 | 29        |
| 36 | Design of functional composite and all-inorganic nanostructured materials <i>via</i> infiltration of polymer templates with inorganic precursors. Journal of Materials Chemistry C, 2020, 8, 10604-10627.                              | 5.5  | 29        |

Elena V Shevchenko

| #  | Article                                                                                                                                                                                                            | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | How "Hollow―Are Hollow Nanoparticles?. Journal of the American Chemical Society, 2013, 135, 2435-2438.                                                                                                             | 13.7 | 28        |
| 38 | Design of lithium cobalt oxide electrodes with high thermal conductivity and electrochemical performance using carbon nanotubes and diamond particles. Carbon, 2018, 129, 702-710.                                 | 10.3 | 27        |
| 39 | Oxidation Induced Doping of Nanoparticles Revealed by <i>in Situ</i> X-ray Absorption Studies. Nano<br>Letters, 2016, 16, 3738-3747.                                                                               | 9.1  | 25        |
| 40 | Rapid Synthesis of Nanoporous Conformal Coatings via Plasma-Enhanced Sequential Infiltration of a<br>Polymer Template. ACS Omega, 2017, 2, 7812-7819.                                                              | 3.5  | 23        |
| 41 | Block-Co-polymer-Assisted Synthesis of All Inorganic Highly Porous Heterostructures with Highly<br>Accessible Thermally Stable Functional Centers. ACS Applied Materials & Interfaces, 2019, 11,<br>30154-30162.   | 8.0  | 22        |
| 42 | Ligand dynamics control structure, elasticity, and high-pressure behavior of nanoparticle superlattices. Nanoscale, 2019, 11, 10655-10666.                                                                         | 5.6  | 20        |
| 43 | Accessibility of the pores in highly porous alumina films synthesized via sequential infiltration synthesis. Nanotechnology, 2018, 29, 495703.                                                                     | 2.6  | 19        |
| 44 | The surface science of nanoparticles for catalysis: electronic and steric effects of organic ligands.<br>Journal of Nanoparticle Research, 2018, 20, 1.                                                            | 1.9  | 16        |
| 45 | Effect of the Micelle Opening in Self-assembled Amphiphilic Block Co-polymer Films on the Infiltration of Inorganic Precursors. Langmuir, 2019, 35, 796-803.                                                       | 3.5  | 16        |
| 46 | Synthesis, modular composition, and electrochemical properties of lamellar iron sulfides. Journal of<br>Materials Chemistry A, 2020, 8, 15834-15844.                                                               | 10.3 | 10        |
| 47 | Swelling-Assisted Sequential Infiltration Synthesis of Nanoporous ZnO Films with Highly Accessible<br>Pores and Their Sensing Potential for Ethanol. ACS Applied Materials & Interfaces, 2021, 13,<br>35941-35948. | 8.0  | 10        |
| 48 | Insights into the extraction of photogenerated holes from CdSe/CdS nanorods for oxidative organic catalysis. Journal of Materials Chemistry A, 2021, 9, 12690-12699.                                               | 10.3 | 8         |
| 49 | Unexpected compositional and structural modification of CoPt3 nanoparticles by extensive surface purification. Nanoscale, 2018, 10, 6382-6392.                                                                     | 5.6  | 7         |
| 50 | Visualizing Heterogeneity of Monodisperse CdSe Nanocrystals by Their Assembly into<br>Three-Dimensional Supercrystals. ACS Nano, 2020, 14, 14989-14998.                                                            | 14.6 | 4         |
| 51 | Effect of Polymer Removal on the Morphology and Phase of the Nanoparticles in All-Inorganic<br>Heterostructures Synthesized via Two-Step Polymer Infiltration. Molecules, 2021, 26, 679.                           | 3.8  | 3         |
| 52 | Single-Molecule Measurements Spatially Probe States Involved in Electron Transfer from CdSe/CdS<br>Core/Shell Nanorods. Journal of Physical Chemistry C, 2021, 125, 21246-21253.                                   | 3.1  | 3         |
| 53 | Syntheses and Characterizations: 3.2 Synthesis of Metal Nanoparticles. , 0, , 185-238.                                                                                                                             |      | 2         |
| 54 | Hypoxia-induced biosynthesis of gold nanoparticles in the living brain. Nanoscale, 2019, 11, 19285-19290.                                                                                                          | 5.6  | 1         |

| #  | Article                                                                                                                        | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Spontaneous formation of anisotropic microrods from paraffin wax in an aqueous environment. Soft<br>Matter, 2021, 18, 156-161. | 2.7 | 1         |