Marco Macchia

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5060093/publications.pdf

Version: 2024-02-01

48 1,051 20 30 g-index

48 48 48 1641 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Cytotoxic Activity of Oleocanthal Isolated from Virgin Olive Oil on Human Melanoma Cells. Nutrition and Cancer, 2016, 68, 873-877.	0.9	65
2	The Extra-Virgin Olive Oil Polyphenols Oleocanthal and Oleacein Counteract Inflammation-Related Gene and miRNA Expression in Adipocytes by Attenuating NF-ÎB Activation. Nutrients, 2019, 11, 2855.	1.7	63
3	Oleocanthal and oleacein contribute to the in vitro therapeutic potential of extra virgin oil-derived extracts in non-melanoma skin cancer. Toxicology in Vitro, 2018, 52, 243-250.	1.1	57
4	Identification of the First Synthetic Allosteric Modulator of the CB ₂ Receptors and Evidence of Its Efficacy for Neuropathic Pain Relief. Journal of Medicinal Chemistry, 2019, 62, 276-287.	2.9	47
5	Identification and characterization of a new reversible MAGL inhibitor. Bioorganic and Medicinal Chemistry, 2014, 22, 3285-3291.	1.4	43
6	Discovery of 1,5-Diphenylpyrazole-3-Carboxamide Derivatives as Potent, Reversible, and Selective Monoacylglycerol Lipase (MAGL) Inhibitors. Journal of Medicinal Chemistry, 2018, 61, 1340-1354.	2.9	43
7	Design, Synthesis, and Evaluation of Thyronamine Analogues as Novel Potent Mouse Trace Amine Associated Receptor 1 (<i>m</i> TAAR1) Agonists. Journal of Medicinal Chemistry, 2015, 58, 5096-5107.	2.9	42
8	Structural Optimization of 4-Chlorobenzoylpiperidine Derivatives for the Development of Potent, Reversible, and Selective Monoacylglycerol Lipase (MAGL) Inhibitors. Journal of Medicinal Chemistry, 2016, 59, 10299-10314.	2.9	42
9	Optimization of a Benzoylpiperidine Class Identifies a Highly Potent and Selective Reversible Monoacylglycerol Lipase (MAGL) Inhibitor. Journal of Medicinal Chemistry, 2019, 62, 1932-1958.	2.9	42
10	New quinolone- and 1,8-naphthyridine-3-carboxamides as selective CB2 receptor agonists with anticancer and immuno–modulatory activity. European Journal of Medicinal Chemistry, 2015, 97, 10-18.	2.6	40
11	A Proteomic Approach to Uncover Neuroprotective Mechanisms of Oleocanthal against Oxidative Stress. International Journal of Molecular Sciences, 2018, 19, 2329.	1.8	39
12	Design and synthesis of 2-oxindole based multi-targeted inhibitors of PDK1/Akt signaling pathway for the treatment of glioblastoma multiforme. European Journal of Medicinal Chemistry, 2015, 105, 274-288.	2.6	37
13	Discovery of long-chain salicylketoxime derivatives as monoacylglycerol lipase (MAGL) inhibitors. European Journal of Medicinal Chemistry, 2018, 157, 817-836.	2.6	30
14	Computationally driven discovery of phenyl(piperazin-1-yl)methanone derivatives as reversible monoacylglycerol lipase (MACL) inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 2019, 34, 589-596.	2.5	28
15	Development of terphenyl-2-methyloxazol- $5(4 < i > H < / i >)$ -one derivatives as selective reversible MAGL inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 2017, 32, 1240-1252.	2.5	27
16	Design, synthesis and biological evaluation of second-generation benzoylpiperidine derivatives as reversible monoacylglycerol lipase (MAGL) inhibitors. European Journal of Medicinal Chemistry, 2021, 209, 112857.	2.6	24
17	Allosteric modulators targeting cannabinoid cb1 and cb2 receptors: implications for drug discovery. Future Medicinal Chemistry, 2019, 11, 2019-2037.	1.1	23
18	The Extra Virgin Olive Oil Polyphenol Oleocanthal Exerts Antifibrotic Effects in the Liver. Frontiers in Nutrition, 2021, 8, 715183.	1.6	23

#	Article	IF	Citations
19	Development and Validation of a Docking-Based Virtual Screening Platform for the Identification of New Lactate Dehydrogenase Inhibitors. Molecules, 2015, 20, 8772-8790.	1.7	22
20	Waste Autochthonous Tuscan Olive Leaves (Olea europaea var. Olivastra seggianese) as Antioxidant Source for Biomedicine. International Journal of Molecular Sciences, 2019, 20, 5918.	1.8	22
21	4-Aryliden-2-methyloxazol-5(4 <i>H</i>)-one as a new scaffold for selective reversible MAGL inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 2016, 31, 137-146.	2.5	21
22	Hydrogen Sulfide: A Worthwhile Tool in the Design of New Multitarget Drugs. Frontiers in Chemistry, 2017, 5, 72.	1.8	21
23	Extensive Reliability Evaluation of Docking-Based Target-Fishing Strategies. International Journal of Molecular Sciences, 2019, 20, 1023.	1.8	20
24	A Virtual Screening Study for Lactate Dehydrogenase 5 Inhibitors by Using a Pharmacophoreâ€based Approach. Molecular Informatics, 2016, 35, 434-439.	1.4	18
25	An updated patent review of monoacylglycerol lipase (MAGL) inhibitors (2018-present). Expert Opinion on Therapeutic Patents, 2021, 31, 153-168.	2.4	18
26	VenomPred: A Machine Learning Based Platform for Molecular Toxicity Predictions. International Journal of Molecular Sciences, 2022, 23, 2105.	1.8	18
27	Polypharmacological profile of 1,2-dihydro-2-oxo-pyridine-3-carboxamides in the endocannabinoid system. European Journal of Medicinal Chemistry, 2018, 154, 155-171.	2.6	17
28	Traditional Uses of Cannabinoids and New Perspectives in the Treatment of Multiple Sclerosis. Medicines (Basel, Switzerland), 2018, 5, 91.	0.7	16
29	Antioxidant and Neuroprotective Activity of Extra Virgin Olive Oil Extracts Obtained from Quercetano Cultivar Trees Grown in Different Areas of the Tuscany Region (Italy). Antioxidants, 2021, 10, 421.	2.2	15
30	Novel analogs of PSNCBAM-1 as allosteric modulators of cannabinoid CB1 receptor. Bioorganic and Medicinal Chemistry, 2017, 25, 6427-6434.	1.4	14
31	Immunomodulatory Activity of Electrospun Polyhydroxyalkanoate Fiber Scaffolds Incorporating Olive Leaf Extract. Applied Sciences (Switzerland), 2021, 11, 4006.	1.3	13
32	The endocannabinoid system dual-target ligand N-cycloheptyl-1,2-dihydro-5-bromo-1-(4-fluorobenzyl)-6-methyl-2-oxo-pyridine-3-carboxamide improves disease severity in a mouse model of multiple sclerosis. European Journal of Medicinal Chemistry, 2020, 208, 112858.	2.6	12
33	Diclofenac-Derived Hybrids for Treatment of Actinic Keratosis and Squamous Cell Carcinoma. Molecules, 2019, 24, 1793.	1.7	11
34	Modification on the 1,2-dihydro-2-oxo-pyridine-3-carboxamide core to obtain multi-target modulators of endocannabinoid system. Bioorganic Chemistry, 2020, 94, 103353.	2.0	10
35	Three-Dimensional Interactions Analysis of the Anticancer Target c-Src Kinase with Its Inhibitors. Cancers, 2020, 12, 2327.	1.7	10
36	Medicinal Chemistry approach, pharmacology and neuroprotective benefits of CB2R modulators in neurodegenerative diseases. Pharmacological Research, 2021, 170, 105607.	3.1	9

#	Article	IF	CITATIONS
37	Content Variations in Oleocanthalic Acid and Other Phenolic Compounds in Extra-Virgin Olive Oil during Storage. Foods, 2022, 11, 1354.	1.9	8
38	New PIN1 inhibitors identified through a pharmacophore-driven, hierarchical consensus docking strategy. Journal of Enzyme Inhibition and Medicinal Chemistry, 2022, 37, 145-150.	2.5	7
39	Predicting potentially pathogenic effects of $\langle i \rangle h \langle i \rangle$ RPE65 missense mutations: a computational strategy based on molecular dynamics simulations. Journal of Enzyme Inhibition and Medicinal Chemistry, 2022, 37, 1765-1772.	2.5	7
40	Discovery of Monoacylglycerol Lipase (MAGL) Inhibitors Based on a Pharmacophore-Guided Virtual Screening Study. Molecules, 2021, 26, 78.	1.7	6
41	Reversible Monoacylglycerol Lipase Inhibitors: Discovery of a New Class of Benzylpiperidine Derivatives. Journal of Medicinal Chemistry, 2022, 65, 7118-7140.	2.9	6
42	Phenolic Compounds in Prevention and Treatment of Skin Cancers: A Review. Current Medicinal Chemistry, 2021, 28, 6730-6752.	1.2	5
43	Monoacylglycerol lipase (MAGL) inhibitors based on a diphenylsulfide-benzoylpiperidine scaffold. European Journal of Medicinal Chemistry, 2021, 223, 113679.	2.6	5
44	Rational Development of MAGL Inhibitors. Methods in Molecular Biology, 2018, 1824, 335-346.	0.4	2
45	CB1 receptor binding sites for NAM and PAM: A first approach for studying, new nâ€'butylâ€'diphenylcarboxamides as allosteric modulators. European Journal of Pharmaceutical Sciences, 2022, 169, 106088.	1.9	2
46	PSNCBAM-1 analogs: Structural evolutions and allosteric properties at cannabinoid CB1 receptor. European Journal of Medicinal Chemistry, 2020, 203, 112606.	2.6	1
47	Synthesis and In Vivo Imaging of N-(3-[11C]Methoxybenzyl)-2-(3-Methoxyphenyl)ethylaniline as a Potential Targeting Agent for P-glycoprotein. Molecular Imaging and Biology, 2016, 18, 916-923.	1.3	0
48	Development of Methods for Recovering Endotoxins from Surfaces and from Air in Production Environment of Injectable Drugs. PDA Journal of Pharmaceutical Science and Technology, 2017, 71, 502-510.	0.3	0