JoÃ**∮** TomÉ

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/505988/publications.pdf Version: 2024-02-01

		41258	54797
201	8,478	49	84
papers	citations	h-index	g-index
214	214	214	8919
all docs	docs citations	times ranked	citing authors

IOÃ FO TOMÃo

#	Article	IF	CITATIONS
1	Multifunctional metal–organic frameworks: from academia to industrial applications. Chemical Society Reviews, 2015, 44, 6774-6803.	18.7	766
2	Ligand design for functional metal–organic frameworks. Chemical Society Reviews, 2012, 41, 1088-1110.	18.7	725
3	Antimicrobial Photodynamic Therapy: Study of Bacterial Recovery Viability and Potential Development of Resistance after Treatment. Marine Drugs, 2010, 8, 91-105.	2.2	340
4	An insight on bacterial cellular targets of photodynamic inactivation. Future Medicinal Chemistry, 2014, 6, 141-164.	1.1	224
5	Charge effect on the photoinactivation of Gram-negative and Gram-positive bacteria by cationic meso-substituted porphyrins. BMC Microbiology, 2009, 9, 70.	1.3	190
6	Synthesis and Antibacterial Activity of New Poly-S-lysineâ^'Porphyrin Conjugates. Journal of Medicinal Chemistry, 2004, 47, 6649-6652.	2.9	148
7	Synthesis of glycoporphyrin derivatives and their antiviral activity against herpes simplex virus types 1 and 2. Bioorganic and Medicinal Chemistry, 2005, 13, 3878-3888.	1.4	128
8	Functional Cationic Nanomagnetâ^'Porphyrin Hybrids for the Photoinactivation of Microorganisms. ACS Nano, 2010, 4, 7133-7140.	7.3	112
9	Photodynamic inactivation of multidrug-resistant bacteria in hospital wastewaters: influence of residual antibiotics. Photochemical and Photobiological Sciences, 2014, 13, 626-633.	1.6	112
10	Energy and Electron Transfer in Polyacetylene-Linked Zinc-Porphyrin-[60]Fullerene Molecular Wires. Chemistry - A European Journal, 2005, 11, 3375-3388.	1.7	110
11	Mechanisms of photodynamic inactivation of a Gram-negative recombinant bioluminescent bacterium by cationic porphyrins. Photochemical and Photobiological Sciences, 2011, 10, 1659-1669.	1.6	106
12	Photodynamic Inactivation of Bacterial and Yeast Biofilms With a Cationic Porphyrin. Photochemistry and Photobiology, 2014, 90, 1387-1396.	1.3	104
13	Photodynamic inactivation of bacteria: finding the effective targets. Future Medicinal Chemistry, 2015, 7, 1221-1224.	1.1	103
14	Phthalocyanine Blends Improve Bulk Heterojunction Solar Cells. Journal of the American Chemical Society, 2010, 132, 2552-2554.	6.6	102
15	Influence of external bacterial structures on the efficiency of photodynamic inactivation by a cationic porphyrin. Photochemical and Photobiological Sciences, 2014, 13, 680-690.	1.6	99
16	[1,2,3,4-Tetrakis(α/β-d-galactopyranos-6-yl)phthalocyaninato]zinc(II): a water-soluble phthalocyanine. Tetrahedron Letters, 2006, 47, 9177-9180.	0.7	93
17	Photoinactivation of bacteria in wastewater by porphyrins: Bacterial β-galactosidase activity and leucine-uptake as methods to monitor the process. Journal of Photochemistry and Photobiology B: Biology, 2007, 88, 112-118.	1.7	93
18	Porphyrin and phthalocyanine glycodendritic conjugates: synthesis, photophysical and photochemical properties. Chemical Communications, 2012, 48, 3608.	2.2	93

#	Article	IF	CITATIONS
19	Synthesis and Photophysical Properties of Thioglycosylated Chlorins, Isobacteriochlorins, and Bacteriochlorins for Bioimaging and Diagnostics. Bioconjugate Chemistry, 2010, 21, 2136-2146.	1.8	91
20	Evaluation of resistance development and viability recovery by a non-enveloped virus after repeated cycles of aPDT. Antiviral Research, 2011, 91, 278-282.	1.9	89
21	Amphiphilic phthalocyanine–cyclodextrin conjugates for cancer photodynamic therapy. Chemical Communications, 2014, 50, 8363-8366.	2.2	84
22	Photodynamic inactivation of Penicillium chrysogenum conidia by cationic porphyrins. Photochemical and Photobiological Sciences, 2011, 10, 1735-1743.	1.6	82
23	Photodynamic inactivation of Escherichia coli with cationic meso-tetraarylporphyrins – The charge number and charge distribution effects. Catalysis Today, 2016, 266, 197-204.	2.2	82
24	Photodynamic inactivation of recombinant bioluminescent Escherichia coli by cationic porphyrins under artificial and solar irradiation. Journal of Industrial Microbiology and Biotechnology, 2008, 35, 1447-1454.	1.4	81
25	Sewage bacteriophage photoinactivation by cationic porphyrins: a study of charge effect. Photochemical and Photobiological Sciences, 2008, 7, 415.	1.6	80
26	Porphyrin-Based Metal-Organic Frameworks as Heterogeneous Catalysts in Oxidation Reactions. Molecules, 2016, 21, 1348.	1.7	80
27	Metal–Organic Frameworks assembled from tetraphosphonic ligands and lanthanides. Coordination Chemistry Reviews, 2018, 355, 133-149.	9.5	80
28	Porphyrin derivatives as photosensitizers for the inactivation of <i>Bacillus cereus</i> endospores. Journal of Applied Microbiology, 2009, 106, 1986-1995.	1.4	79
29	Sewage bacteriophage inactivation by cationic porphyrins: influence of light parameters. Photochemical and Photobiological Sciences, 2010, 9, 1126.	1.6	71
30	Synthesis of water-soluble phthalocyanines bearing four or eight d-galactose units. Carbohydrate Research, 2009, 344, 507-510.	1.1	68
31	Photodynamic Antimicrobial Chemotherapy in Aquaculture: Photoinactivation Studies of Vibrio fischeri. PLoS ONE, 2011, 6, e20970.	1.1	67
32	Fast detection of nitroaromatics using phosphonate pyrene motifs as dual chemosensors. Chemical Communications, 2014, 50, 9683-9686.	2.2	65
33	A new insight on nanomagnet–porphyrin hybrids for photodynamic inactivation of microorganisms. Dyes and Pigments, 2014, 110, 80-88.	2.0	65
34	Porphyrins and Phthalocyanines Decorated with Dendrimers: Synthesis and Biomedical Applications. Current Organic Synthesis, 2014, 11, 110-126.	0.7	64
35	Cancer cell spheroids are a better screen for the photodynamic efficiency of glycosylated photosensitizers. PLoS ONE, 2017, 12, e0177737.	1.1	64
36	Synthesis of Novel N-Linked Porphyrinâ~'Phthalocyanine Dyads. Organic Letters, 2007, 9, 1557-1560.	2.4	61

#	Article	IF	CITATIONS
37	Phthalocyanine Thioâ€Pyridinium Derivatives as Antibacterial Photosensitizers ^{â€} . Photochemistry and Photobiology, 2012, 88, 537-547.	1.3	60
38	New porphyrin derivatives for phosphate anion sensing in both organic and aqueous media. Chemical Communications, 2014, 50, 1359-1361.	2.2	58
39	Concentration sensor based on a tilted fiber Bragg grating for anions monitoring. Optical Fiber Technology, 2014, 20, 422-427.	1.4	56
40	Comparative photodynamic inactivation of antibiotic resistant bacteria by first and second generation cationic photosensitizers. Photochemical and Photobiological Sciences, 2012, 11, 1905-1913.	1.6	55
41	Antibodies armed with photosensitizers: from chemical synthesis to photobiological applications. Organic and Biomolecular Chemistry, 2015, 13, 2518-2529.	1.5	55
42	Photodegradation of organic pollutants in water by immobilized porphyrins and phthalocyanines. Journal of Porphyrins and Phthalocyanines, 2016, 20, 150-166.	0.4	54
43	Synthesis and Photophysical Studies of New Porphyrin-Phthalocyanine Dyads with Hindered Rotation. European Journal of Organic Chemistry, 2006, 2006, 257-267.	1.2	53
44	Antimicrobial photodynamic activity of porphyrin derivatives: potential application on medical and water disinfection. Journal of Porphyrins and Phthalocyanines, 2009, 13, 574-577.	0.4	53
45	Silica nanoparticles functionalized with porphyrins and analogs for biomedical studies. Journal of Porphyrins and Phthalocyanines, 2011, 15, 517-533.	0.4	53
46	Phosphonate Appended Porphyrins as Versatile Chemosensors for Selective Detection of Trinitrotoluene. Analytical Chemistry, 2015, 87, 4515-4522.	3.2	53
47	Lanthanide-polyphosphonate coordination polymers combining catalytic and photoluminescence properties. Chemical Communications, 2013, 49, 6400.	2.2	51
48	Synthesis of neutral and cationic tripyridylporphyrin-d-galactose conjugates and the photoinactivation of HSV-1. Bioorganic and Medicinal Chemistry, 2007, 15, 4705-4713.	1.4	50
49	Multi-functional metal–organic frameworks assembled from a tripodal organic linker. Journal of Materials Chemistry, 2012, 22, 18354.	6.7	50
50	Thermal stability of P3HT and P3HT:PCBM blends in the molten state. Polymer Testing, 2013, 32, 1192-1201.	2.3	50
51	Galactodendritic Phthalocyanine Targets Carbohydrate-Binding Proteins Enhancing Photodynamic Therapy. PLoS ONE, 2014, 9, e95529.	1.1	50
52	Use of Photosensitizers in Semisolid Formulations for Microbial Photodynamic Inactivation. Journal of Medicinal Chemistry, 2016, 59, 4428-4442.	2.9	50
53	An effective and potentially safe blood disinfection protocol using tetrapyrrolic photosensitizers. Future Medicinal Chemistry, 2017, 9, 365-379.	1.1	50
54	Photodynamic oxidation of <i>Escherichia coli</i> membrane phospholipids: new insights based on lipidomics. Rapid Communications in Mass Spectrometry, 2013, 27, 2717-2728.	0.7	48

#	Article	IF	CITATIONS
55	Decorating graphene nanosheets with electron accepting pyridyl-phthalocyanines. Nanoscale, 2015, 7, 5674-5682.	2.8	47
56	Robust Multifunctional Yttrium-Based Metal–Organic Frameworks with Breathing Effect. Inorganic Chemistry, 2017, 56, 1193-1208.	1.9	47
57	Porphyrin–Phthalocyanine/Pyridylfullerene Supramolecular Assemblies. Chemistry - A European Journal, 2012, 18, 3210-3219.	1.7	46
58	Photoimmunoconjugates: novel synthetic strategies to target and treat cancer by photodynamic therapy. Organic and Biomolecular Chemistry, 2019, 17, 2579-2593.	1.5	46
59	Involvement of type I and type II mechanisms on the photoinactivation of non-enveloped DNA and RNA bacteriophages. Journal of Photochemistry and Photobiology B: Biology, 2013, 120, 10-16.	1.7	45
60	Multifunctional micro- and nanosized metal–organic frameworks assembled from bisphosphonates and lanthanides. Journal of Materials Chemistry C, 2014, 2, 3311.	2.7	44
61	New Materials Based on Cationic Porphyrins Conjugated to Chitosan or Titanium Dioxide: Synthesis, Characterization and Antimicrobial Efficacy. International Journal of Molecular Sciences, 2019, 20, 2522.	1.8	44
62	New platinum(II)–bipyridyl corrole complexes: Synthesis, characterization and binding studies with DNA and HSA. Journal of Inorganic Biochemistry, 2015, 153, 32-41.	1.5	43
63	Bifunctional Porphyrin-Based Nano-Metal–Organic Frameworks: Catalytic and Chemosensing Studies. Inorganic Chemistry, 2018, 57, 3855-3864.	1.9	43
64	Synthesis of cationic β-vinyl substituted meso-tetraphenylporphyrins and their in vitro activity against herpes simplex virus type 1. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 3333-3337.	1.0	42
65	Nucleic acid changes during photodynamic inactivation of bacteria by cationic porphyrins. Bioorganic and Medicinal Chemistry, 2013, 21, 4311-4318.	1.4	42
66	Porphyrin conjugated with serum albumins and monoclonal antibodies boosts efficiency in targeted destruction of human bladder cancer cells. Organic and Biomolecular Chemistry, 2014, 12, 1804.	1.5	41
67	First phthalocyanine–β-cyclodextrin dyads. Tetrahedron Letters, 2006, 47, 6129-6132.	0.7	40
68	Multicharged Phthalocyanines as Selective Ligands for G-Quadruplex DNA Structures. Molecules, 2019, 24, 733.	1.7	40
69	Susceptibility of non-enveloped DNA- and RNA-type viruses to photodynamic inactivation. Photochemical and Photobiological Sciences, 2012, 11, 1520-1523.	1.6	38
70	Mitochondria-Targeted Photodynamic Therapy with a Galactodendritic Chlorin to Enhance Cell Death in Resistant Bladder Cancer Cells. Bioconjugate Chemistry, 2016, 27, 2762-2769.	1.8	37
71	Applicability of photodynamic antimicrobial chemotherapy as an alternative to inactivate fish pathogenic bacteria in aquaculture systems. Photochemical and Photobiological Sciences, 2011, 10, 1691-1700.	1.6	36
72	Inverted methoxypyridinium phthalocyanines for PDI of pathogenic bacteria. Photochemical and Photobiological Sciences, 2015, 14, 1853-1863.	1.6	36

#	Article	IF	CITATIONS
73	Galactodendritic Porphyrinic Conjugates as New Biomimetic Catalysts for Oxidation Reactions. Inorganic Chemistry, 2015, 54, 4382-4393.	1.9	36
74	Synthesis and photophysical characterization of dimethylamine-derived Zn(<scp>ii</scp>)phthalocyanines: exploring their potential as selective chemosensors for trinitrophenol. Journal of Materials Chemistry C, 2015, 3, 1056-1067.	2.7	36
75	Photodynamic oxidation of <i>Staphylococcus warneri</i> membrane phospholipids: new insights based on lipidomics. Rapid Communications in Mass Spectrometry, 2013, 27, 1607-1618.	0.7	34
76	Phthalocyanines for G-quadruplex aptamers binding. Bioorganic Chemistry, 2020, 100, 103920.	2.0	34
77	PEG-containing ruthenium phthalocyanines as photosensitizers for photodynamic therapy: synthesis, characterization and in vitro evaluation. Journal of Materials Chemistry B, 2017, 5, 5862-5869.	2.9	33
78	Photophysical properties of a photocytotoxic fluorinated chlorin conjugated to four β-cyclodextrins. Photochemical and Photobiological Sciences, 2008, 7, 834-843.	1.6	32
79	The role of galectin-1 in inÂvitro and inÂvivo photodynamic therapy with a galactodendritic porphyrin. European Journal of Cancer, 2016, 68, 60-69.	1.3	32
80	Hydrogels containing porphyrin-loaded nanoparticles for topical photodynamic applications. International Journal of Pharmaceutics, 2016, 510, 221-231.	2.6	32
81	Detoxification of a Mustard-Gas Simulant by Nanosized Porphyrin-Based Metal–Organic Frameworks. ACS Applied Nano Materials, 2019, 2, 465-469.	2.4	32
82	Multifunctionality in an Ion-Exchanged Porous Metal–Organic Framework. Journal of the American Chemical Society, 2021, 143, 1365-1376.	6.6	31
83	Synthesis of Glycoporphyrins. Topics in Heterocyclic Chemistry, 2007, , 179-248.	0.2	30
84	Synthetic approaches to glycophthalocyanines. Tetrahedron, 2014, 70, 2681-2698.	1.0	29
85	Synthesis, characterization and biomolecule-binding properties of novel tetra-platinum(<scp>ii</scp>)-thiopyridylporphyrins. Dalton Transactions, 2015, 44, 530-538.	1.6	29
86	The role of surface functionalization of silica nanoparticles for bioimaging. Journal of Innovative Optical Health Sciences, 2016, 09, 1630005.	0.5	29
87	Towards hydroxamic acid linked zirconium metal–organic frameworks. Materials Chemistry Frontiers, 2017, 1, 1194-1199.	3.2	29
88	Carbon-1 versus Carbon-3 Linkage of <scp>d</scp> -Galactose to Porphyrins: Synthesis, Uptake, and Photodynamic Efficiency. Bioconjugate Chemistry, 2018, 29, 306-315.	1.8	29
89	Photoinactivation of Planktonic and Biofilm Forms of <i>Escherichia coli</i> through the Action of Cationic Zinc(II) Phthalocyanines. ChemPhotoChem, 2019, 3, 251-260.	1.5	28
90	Cationic galactoporphyrin photosensitisers against UV-B resistant bacteria: oxidation of lipids and proteins by 1O2. Photochemical and Photobiological Sciences, 2013, 12, 262-271.	1.6	27

#	Article	IF	CITATIONS
91	Highly Efficient Singlet Oxygen Generators Based on Ruthenium Phthalocyanines: Synthesis, Characterization and in vitro Evaluation for Photodynamic Therapy. Chemistry - A European Journal, 2020, 26, 1789-1799.	1.7	27
92	Thermal stability of low-bandgap copolymers PTB7 and PTB7-Th and their bulk heterojunction composites. Polymer Bulletin, 2018, 75, 515-532.	1.7	26
93	Photodynamic inactivation of Escherichia coli with cationic ammonium Zn(ii) phthalocyanines. Photochemical and Photobiological Sciences, 2015, 14, 1872-1879.	1.6	25
94	Copper–Porphyrin–Metal–Organic Frameworks as Oxidative Heterogeneous Catalysts. ChemCatChem, 2017, 9, 2939-2945.	1.8	25
95	Dual functionality of phosphonic-acid-appended phthalocyanines: inhibitors of urokinase plasminogen activator and anticancer photodynamic agents. Chemical Communications, 2015, 51, 15550-15553.	2.2	24
96	Porphyrin modified trastuzumab improves efficacy of HER2 targeted photodynamic therapy of gastric cancer. International Journal of Cancer, 2017, 141, 1478-1489.	2.3	24
97	Chain-dependent photocytotoxicity of tricationic porphyrin conjugates and related mechanisms of cell death in proliferating human skin keratinocytes. Biochemical Pharmacology, 2010, 80, 1373-1385.	2.0	23
98	Versatile thiopyridyl/pyridinone porphyrins combined with potassium iodide and thiopyridinium/methoxypyridinium porphyrins on E. coli photoinactivation. Dyes and Pigments, 2020, 181, 108476.	2.0	23
99	Photosensitized oxidation of phosphatidylethanolamines monitored by electrospray tandem mass spectrometry. Journal of Mass Spectrometry, 2013, 48, 1357-1365.	0.7	21
100	Photoluminescent layered lanthanide–organic framework based on a novel trifluorotriphosphonate organic linker. CrystEngComm, 2014, 16, 344-358.	1.3	21
101	Octatosylaminophthalocyanine: A reusable chromogenic anion chemosensor. Sensors and Actuators B: Chemical, 2014, 201, 387-394.	4.0	21
102	Interactions of cationic porphyrins with double-stranded oligodeoxynucleotides: a study by electrospray ionisation mass spectrometry. Journal of Mass Spectrometry, 2005, 40, 1439-1447.	0.7	20
103	Photoâ€inactivation of <i>Bacillus</i> endospores: interâ€specific variability of inactivation efficiency. Microbiology and Immunology, 2012, 56, 692-699.	0.7	20
104	Nanomagnet-photosensitizer hybrid materials for the degradation of 17β-estradiol in batch and flow modes. Dyes and Pigments, 2017, 142, 535-543.	2.0	20
105	Enhancement of the photodynamic activity of tri-cationic porphyrins towards proliferating keratinocytes by conjugation to poly-S-lysine. Photochemical and Photobiological Sciences, 2006, 5, 126-133.	1.6	19
106	Structural Diversity of Lanthanum–Organic Frameworks Based on 1,4-Phenylenebis(methylene)diphosphonic Acid. Crystal Growth and Design, 2013, 13, 543-560.	1.4	19
107	Noncovalent Functionalization of Thiopyridyl Porphyrins with Ruthenium Phthalocyanines. ChemPlusChem, 2015, 80, 832-838.	1.3	19
108	Synthesis and anion binding properties of porphyrins and related compounds. Journal of Porphyrins and Phthalocyanines, 2016, 20, 950-965.	0.4	19

#	Article	lF	CITATIONS
109	Pyrazole-pyridinium porphyrins and chlorins as powerful photosensitizers for photoinactivation of planktonic and biofilm forms of E. coli. Dyes and Pigments, 2021, 193, 109557.	2.0	19
110	Synthesis and fluorescence properties of a porphyrin–fullerene molecular wire. Journal of Physical Organic Chemistry, 2004, 17, 814-818.	0.9	18
111	Characterization of dinitroporphyrin zinc complexes by electrospray ionization tandem mass spectrometry. Unusual fragmentations of β-(1,3-dinitroalkyl) porphyrins. Journal of Mass Spectrometry, 2005, 40, 117-122.	0.7	18
112	Highly selective optical chemosensor for cyanide in aqueous medium. Sensors and Actuators B: Chemical, 2016, 224, 81-87.	4.0	18
113	Comparative photodynamic inactivation of bioluminescent E. coli by pyridinium and inverted pyridinium chlorins. Dyes and Pigments, 2020, 173, 107410.	2.0	18
114	Photoinactivation of <i>Escherichia coli</i> with Water-Soluble Ammonium-Substituted Phthalocyanines. ACS Applied Bio Materials, 2020, 3, 4044-4051.	2.3	18
115	Structural characterization of glycoporphyrins by electrospray tandem mass spectrometry. Journal of Mass Spectrometry, 2004, 39, 158-167.	0.7	17
116	Fluorescence biolabeling using methylated silica nanoparticles containing a lanthanide complex. Journal of Materials Chemistry B, 2013, 1, 5429.	2.9	17
117	Cationic porphyrins with inverted pyridinium groups and their fluorescence properties. Tetrahedron Letters, 2014, 55, 4156-4159.	0.7	17
118	Synthesis, Characterization and Inâ€Vitro Evaluation of Carbohydrate ontaining Ruthenium Phthalocyanines as Third Generation Photosensitizers for Photodynamic Therapy. ChemPhotoChem, 2018, 2, 640-654.	1.5	17
119	Unsymmetrical cationic porphyrin-cyclodextrin bioconjugates for photoinactivation of Escherichia coli. Photodiagnosis and Photodynamic Therapy, 2020, 31, 101788.	1.3	17
120	Layered Metal–Organic Frameworks Based on Octahedral Lanthanides and a Phosphonate Linker: Control of Crystal Size. Crystal Growth and Design, 2014, 14, 4873-4877.	1.4	16
121	Utilizing Nearest-Neighbor Interactions To Alter Charge Transport Mechanisms in Molecular Assemblies of Porphyrins on Surfaces. Journal of Physical Chemistry C, 2015, 119, 13569-13579.	1.5	16
122	Microwave Synthesis of a photoluminescent Metal-Organic Framework based on a rigid tetraphosphonate linker. Inorganica Chimica Acta, 2017, 455, 584-594.	1.2	16
123	A Galactose Dendritic Silicon (IV) Phthalocyanine as a Photosensitizing Agent in Cancer Photodynamic Therapy. ChemPlusChem, 2018, 83, 855-860.	1.3	16
124	New pyrimidine and pyrimidone derivatives of [60]fullerence. Tetrahedron, 1998, 54, 11141-11150.	1.0	15
125	Characterization of cationic glycoporphyrins by electrospray tandem mass spectrometry. Rapid Communications in Mass Spectrometry, 2006, 20, 3605-3611.	0.7	15
126	Characterization of isomeric cationic porphyrins with β-pyrrolic substituents by electrospray mass spectrometry: The singular behavior of a potential virus photoinactivator. Journal of the American Society for Mass Spectrometry, 2007, 18, 218-225.	1.2	15

#	Article	IF	CITATIONS
127	Cationic β-vinyl substituted <i>meso</i> -tetraphenylporphyrins: synthesis and non-covalent interactions with a short poly(dGdC) duplex. Journal of Porphyrins and Phthalocyanines, 2012, 16, 101-113.	0.4	15
128	New copper porphyrins as functional models of catechol oxidase. Journal of Catalysis, 2016, 344, 303-312.	3.1	15
129	[28]Hexaphyrin derivatives for anion recognition in organic and aqueous media. Chemical Communications, 2016, 52, 2181-2184.	2.2	15
130	Charge and substituent effects on the stability of porphyrin/Gâ€quadruplex adducts. Journal of Mass Spectrometry, 2012, 47, 173-179.	0.7	14
131	Metal-organic frameworks based on uranyl and phosphonate ligands. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2014, 70, 28-36.	0.5	14
132	Compromising the plasma membrane as a secondary target in photodynamic therapy-induced necrosis. Bioorganic and Medicinal Chemistry, 2018, 26, 5224-5228.	1.4	14
133	Spherical and rod shaped mesoporous silica nanoparticles for cancer-targeted and photosensitizer delivery in photodynamic therapy. Journal of Materials Chemistry B, 2022, 10, 3248-3259.	2.9	14
134	Synthesis, characterization and electrochemical properties of <i>meso</i> -thiocarboxylate-substituted porphyrin derivatives. Journal of Porphyrins and Phthalocyanines, 2014, 18, 967-974.	0.4	13
135	Supramolecular control of phthalocyanine dye aggregation. Supramolecular Chemistry, 2014, 26, 642-647.	1.5	13
136	Copper-phthalocyanine coordination polymer as a reusable catechol oxidase biomimetic catalyst. Dalton Transactions, 2019, 48, 8144-8152.	1.6	13
137	Porphyrinic coordination polymer-type materials as heterogeneous catalysts in catechol oxidation. Polyhedron, 2019, 158, 478-484.	1.0	13
138	Synthesis, Characterization and Photodynamic Activity against Bladder Cancer Cells of Novel Triazole-Porphyrin Derivatives. Molecules, 2020, 25, 1607.	1.7	13
139	Caveolin-1 Modulation Increases Efficacy of a Galacto-Conjugated Phthalocyanine in Bladder Cancer Cells Resistant to Photodynamic Therapy. Molecular Pharmaceutics, 2020, 17, 2145-2154.	2.3	12
140	Electrospray tandem mass spectrometry of new porphyrin amino acid conjugates. Rapid Communications in Mass Spectrometry, 2005, 19, 2569-2580.	0.7	11
141	Reduction of cationic free-base meso-tris-N-methylpyridinium-4-yl porphyrins in positive mode electrospray ionization mass spectrometry. Journal of the American Society for Mass Spectrometry, 2007, 18, 762-768.	1.2	11
142	Facile synthesis of highly stable BF3-induced meso-tetrakis (4-sulfonato phenyl) porphyrin (TPPS4)-J-aggregates: structure, photophysical and electrochemical properties. New Journal of Chemistry, 2013, 37, 3745.	1.4	11
143	Porphyrin-based photosensitizers and their DNA conjugates for singlet oxygen induced nucleic acid interstrand crosslinking. Organic and Biomolecular Chemistry, 2017, 15, 5402-5409.	1.5	11
144	Supramolecular graphene–phthalocyanine assemblies for technological breakthroughs. Journal of Materials Chemistry C, 2020, 8, 8344-8361.	2.7	11

#	Article	IF	CITATIONS
145	An efficient approach to the synthesis of tetrahydroquinazoline and cyclooctapyrimidine derivatives of meso-tetraphenylporphyrins. Tetrahedron Letters, 1997, 38, 2753-2756.	0.7	10
146	Synthesis of a Rigid Fused Porphyrin-Phthalocyanine Hetero-Dyad with Two Different Metals. Current Organic Chemistry, 2013, 17, 1103-1107.	0.9	10
147	Electrospray Tandem Mass Spectrometry of β-Nitroalkenyl <i>Meso</i> -Tetraphenylporphyrins. European Journal of Mass Spectrometry, 2008, 14, 49-59.	0.5	9
148	Synthesis and differentiation of α―and βâ€glycoporphyrin stereoisomers by electrospray tandem mass spectrometry. Rapid Communications in Mass Spectrometry, 2009, 23, 3478-3483.	0.7	9
149	Synthesis and Characterization of New Crossâ€like Porphyrin–Naphthalocyanine and Porphyrin–Phthalocyanine Pentads. Journal of Heterocyclic Chemistry, 2014, 51, E202.	1.4	9
150	Oxidation of Monoterpenes Catalysed by a Waterâ€Soluble Mn ^{III} PEGâ€Porphyrin in a Biphasic Medium. ChemCatChem, 2018, 10, 2804-2809.	1.8	9
151	Targeting Cancer Cells with Photoactive Silica Nanoparticles. Current Pharmaceutical Design, 2016, 22, 6021-6038.	0.9	9
152	Reduction and adduct formation from electrosprayed solutions of porphyrin salts. Journal of Mass Spectrometry, 2008, 43, 806-813.	0.7	8
153	Synthesis of hexaphyrins and N-fused pentaphyrins bearing pyridin-4-ylsulfanyl groups. Journal of Porphyrins and Phthalocyanines, 2014, 18, 824-831.	0.4	8
154	ESIâ€MS/MS of expanded porphyrins: a look into their structure and aromaticity. Journal of Mass Spectrometry, 2016, 51, 342-349.	0.7	8
155	The Surprisingly Positive Effect of Zinc-Phthalocyanines With High Photodynamic Therapy Efficacy of Melanoma Cancer. Frontiers in Chemistry, 2022, 10, 825716.	1.8	8
156	Tricationic Porphyrin Conjugates: Evidence for Chain-Structure-Dependent Relaxation of Excited Singlet and Triplet States. Journal of Physical Chemistry B, 2009, 113, 16695-16704.	1.2	7
157	An insight into the gas-phase fragmentations of potential molecular sensors with porphyrin-chalcone structures. International Journal of Mass Spectrometry, 2015, 392, 164-172.	0.7	7
158	Phthalocyanine-Functionalized Magnetic Silica Nanoparticles as Anion Chemosensors. Sensors, 2021, 21, 1632.	2.1	7
159	Thiopyridinium phthalocyanine for improved photodynamic efficiency against pathogenic fungi. Journal of Photochemistry and Photobiology B: Biology, 2022, 231, 112459.	1.7	7
160	Photodynamic inactivation of pathogenic Gram-negative and Gram-positive bacteria mediated by Si(IV) phthalocyanines bearing axial ammonium units. Journal of Photochemistry and Photobiology B: Biology, 2022, 233, 112502.	1.7	7
161	Synthesis and Diels–Alder reaction of a sapphyrin derivative. Tetrahedron Letters, 2006, 47, 3131-3134.	0.7	6
162	5-Amino-1H-1,2,4-triazol-4-ium-3-carboxylate hemihydrate. Acta Crystallographica Section E: Structure Reports Online, 2011, 67, o2073-o2074.	0.2	6

#	Article	IF	CITATIONS
163	Multidimensional Transition Metal Complexes Based on 3-Amino-1H-1,2,4-triazole-5-carboxylic Acid: From Discrete Mononuclear Complexes to Layered Materials. Molecules, 2015, 20, 12341-12363.	1.7	6
164	Thiophene- and Carbazole-Substituted N-Methyl-Fulleropyrrolidine Acceptors in PffBT4T-2OD Based Solar Cells. Materials, 2020, 13, 1267.	1.3	6
165	Photocatalytic degradation of methyl orange mediated by a silica coated nanomagnet porphyrin hybrid. Journal of Organometallic Chemistry, 2021, 938, 121751.	0.8	6
166	Glycine methyl ester hydrochloride. Acta Crystallographica Section E: Structure Reports Online, 2009, 65, o1970-o1970.	0.2	5
167	Coordination polymers based on a glycine-derivative ligand. CrystEngComm, 2014, 16, 8119-8137.	1.3	5
168	Unprecedented Double azaâ€Michael Addition within a Sapphyrin Core. Chemistry - A European Journal, 2016, 22, 14349-14355.	1.7	5
169	Antimicrobial Photodynamic Activity of Cationic Nanoparticles Decorated with Glycosylated Photosensitizers for Water Disinfection. ChemPhotoChem, 2018, 2, 596-605.	1.5	5
170	Influence of the meso-substituents of zinc porphyrins in dye-sensitized solar cell efficiency with improved performance under short periods of white light illumination. Dyes and Pigments, 2020, 177, 108280.	2.0	5
171	Encapsulation of glycosylated porphyrins in silica nanoparticles to enhance the efficacy of cancer photodynamic therapy. Materials Advances, 2021, 2, 1613-1620.	2.6	5
172	Porphyrin NanoMetal-Organic Frameworks as Cancer Theranostic Agents. Molecules, 2022, 27, 3111.	1.7	5
173	Novel porphyrin–quinazoline conjugates via the Diels–Alder reaction. Tetrahedron, 2003, 59, 7907-7913.	1.0	4
174	(R)-(1-Ammonioethyl)phosphonate. Acta Crystallographica Section E: Structure Reports Online, 2010, 66, o2271-o2272.	0.2	4
175	Metal–organic framework assembled from erbium and a tetrapodal polyphosphonic acid organic linker. Acta Crystallographica Section C, Structural Chemistry, 2018, 74, 752-759.	0.2	4
176	Highly Efficient Singlet Oxygen Generators Based on Ruthenium Phthalocyanines: Synthesis, Characterization and in vitro Evaluation for Photodynamic Therapy. Chemistry - A European Journal, 2020, 26, 1697-1697.	1.7	4
177	PET/CT Imaging with an 18F-Labeled Galactodendritic Unit in a Galectin-1–Overexpressing Orthotopic Bladder Cancer Model. Journal of Nuclear Medicine, 2020, 61, 1369-1375.	2.8	4
178	Graphene Quantum Dots and Phthalocyanines Turn-OFF-ON Photoluminescence Nanosensor for ds-DNA. Nanomaterials, 2022, 12, 1892.	1.9	4
179	5-[4-(Diethoxyphosphoryl)-2,3,5,6-tetrafluorophenyl]-10,15,20-tris(pentafluorophenyl)porphyrin. Acta Crystallographica Section C: Crystal Structure Communications, 2012, 68, o104-o107.	0.4	3
180	Glycophthalocyanines: structural differentiation and isomeric differentiation by matrixâ€assisted laser desorption/ionization tandem mass spectrometry. Rapid Communications in Mass Spectrometry, 2013, 27, 1019-1026.	0.7	3

#	Article	IF	CITATIONS
181	Molecular Targeted Photodynamic Therapy for Cancer. , 2016, , 127-169.		3
182	Synthesis and characterization of novel 5-monocarbohydrate-10,20-bis-aryl-porphyrins. Journal of Porphyrins and Phthalocyanines, 2020, 24, 330-339.	0.4	3
183	5-Amino-3-(4H-1,2,4-triazol-4-yl)-1H-1,2,4-triazole. Acta Crystallographica Section E: Structure Reports Online, 2012, 68, o2700-o2701.	0.2	2
184	PffBT4T-2OD Based Solar Cells with Aryl-Substituted N-Methyl-Fulleropyrrolidine Acceptors. Materials, 2019, 12, 4100.	1.3	2
185	Iron(III) Complexation with Galactodendritic Porphyrin Species and Hydrocarbons' Oxidative Transformations. European Journal of Inorganic Chemistry, 2021, 2021, 2857-2869.	1.0	2
186	A ruthenium phthalocyanine functionalized with a folic acid unit as a photosensitizer for photodynamic therapy: Synthesis, characterization and in vitro evaluation. Journal of Porphyrins and Phthalocyanines, 0, , .	0.4	2
187	Methyl 2-(4,6-dichloro-1,3,5-triazin-2-ylamino)acetate. Acta Crystallographica Section E: Structure Reports Online, 2009, 65, o1985-o1986.	0.2	2
188	Crystal structure of 5-amino-4 <i>H</i> -1,2,4-triazol-1-ium pyrazine-2-carboxylate: an unexpected salt arising from the decarboxylation of both precursors. Acta Crystallographica Section E: Crystallographic Communications, 2015, 71, 840-843.	0.2	2
189	Complex cellular environments imaged by SERS nanoprobes using sugars as an all-in-one vector. Journal of Materials Chemistry B, 2021, 9, 9285-9294.	2.9	2
190	New porphyrin glyco-conjugates. , 2009, , .		1
191	Trimethyl 2,2′,2′′-[1,3,5-triazine-2,4,6-triyltris(azanediyl)]triacetate. Acta Crystallographica Section E: Structure Reports Online, 2010, 66, o3243-o3244.	0.2	1
192	5,10,15,20-Tetrakis(1-methylpyridinium-4-yl)porphyrin tetraiodide tetrahydrate. Acta Crystallographica Section E: Structure Reports Online, 2011, 67, o3157-o3158.	0.2	1
193	Crystal structure of a compact three-dimensional metal–organic framework based on Cs ⁺ and (4,5-dicyano-1,2-phenylene)bis(phosphonic acid). Acta Crystallographica Section E: Crystallographic Communications, 2016, 72, 1794-1798.	0.2	1
194	Heteroporphyrinoid Systems â \in " Compounds and Materials Composed of Different Chromophores. , 2016, , 1-106.		1
195	A ladder coordination polymer based on Ca ²⁺ and (4,5-dicyano-1,2-phenylene)bis(phosphonic acid): crystal structure and solution-state NMR study. Acta Crystallographica Section C, Structural Chemistry, 2016, 72, 685-691.	0.2	1
196	Pyrene Tetraphosphonateâ€Based Metalâ€Organic Framework: Structure and Photoluminescence. European Journal of Inorganic Chemistry, 2020, 2020, 3565-3572.	1.0	1
197	"PhotoÂantibiotics" Â-the light in the photoinactivation of microorganisms. Revista Virtual De Quimica, 2015, 7, .	0.1	1
198	1,1′-[(5-Hydroxymethyl-1,3-phenylene)bis(methylene)]dipyridin-4(1H)-one monohydrate. Acta Crystallographica Section E: Structure Reports Online, 2011, 67, o1859-o1860.	0.2	0

#	Article	IF	CITATIONS
199	Inactivation of microbial biofilms by visible light with a porphyrinic photosensitizer. New Biotechnology, 2014, 31, S178.	2.4	0
200	Coordination Polymers Based on a Biphenyl Tetraphosphonate Linker: Synthesis Control and Photoluminescence. Molecules, 2020, 25, 1835.	1.7	0
201	Supramolecular anion recognition by tetrapyrrolic macrocycles. Revista Virtual De Quimica, 2009, 1, .	0.1	0