Lucas Wanner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5059843/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	CAreDroid. , 2015, 2015, 386-399.		37
2	VarEMU: An emulation testbed for variability-aware software. , 2013, , .		20
3	Speculative Precision Time Protocol: Submicrosecond clock synchronization for the IoT. , 2016, , .		20
4	Hardware Variability-Aware Duty Cycling for Embedded Sensors. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 2013, 21, 1000-1012.	3.1	19
5	A Hierarchical Approach for Power Management on Mobile Embedded Systems. International Federation for Information Processing, 2006, , 265-274.	0.4	16
6	Evaluation of an RSSI-based Location Algorithm for Wireless Sensor Networks. IEEE Latin America Transactions, 2011, 9, 830-835.	1.6	15
7	Variability-aware duty cycle scheduling in long running embedded sensing systems. , 2011, , .		11
8	NSF expedition on variability-aware software: Recent results and contributions. IT - Information Technology, 2015, 57, 181-198.	0.9	10
9	Operating Systems Portability: 8 bits and beyond. , 2006, , .		9
10	An efficient calibration method for RSSI-based location algorithms. , 2008, , .		9
11	AxRAM: A lightweight implicit interface for approximate data access. Future Generation Computer Systems, 2020, 113, 556-570.	7.5	7
12	Risk-5: Controlled Approximations for RISC-V. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2020, 39, 4052-4063.	2.7	7
13	An IoT-Based System for Monitoring the Health of Guyed Towers in Overhead Power Lines. Sensors, 2021, 21, 6173.	3.8	6
14	Operating System Support for Data Acquisition in Sensor Networks. , 2006, , .		5
15	Programming Support for Distributed Optimization and Control in Cyber-Physical Systems. , 2011, , .		5
16	ADeLe: A description language for approximate hardware. Future Generation Computer Systems, 2020, 102, 245-258.	7.5	5
17	Low-cost estimation of sub-system power. , 2012, , .		4
18	Towards analyzing and improving robustness of software applications to intermittent and permanent		4

faults in hardware. , 2013, , .

LUCAS WANNER

#	Article	IF	CITATIONS
19	A Framework for Dynamic Real-Time Reconfiguration. , 2015, , .		4
20	Power management in the EPOS system. Operating Systems Review (ACM), 2008, 42, 71-80.	1.9	4
21	Configurable Medium Access Control for Wireless Sensor Networks. , 2007, , 401-410.		4
22	Distributed programming framework for fast iterative optimization in networked cyber-physical systems. Transactions on Embedded Computing Systems, 2014, 13, 1-26.	2.9	3
23	X-Ware: mutant computing substrates. , 2015, , .		3
24	One-Shot Time Management Analysis in EPOS. , 2008, , .		2
25	Runtime Optimization of System Utility with Variable Hardware. Transactions on Embedded Computing Systems, 2015, 14, 1-25.	2.9	2
26	Impact of Memory Approximation on Energy Efficiency. , 2018, , .		1
27	SmartApprox: Learning-based configuration of approximate memories forÂenergy-efficient execution. Sustainable Computing: Informatics and Systems, 2022, 34, 100701.	2.2	1
28	Time Synchronization under Temperature and Distance Variations. , 2017, , .		0
29	A Framework for Variable Quality in Applications through Context-Aware Approximate Computing. , 2018, , .		0
30	A Resilient Interface for Approximate Data Access. , 2019, , .		0
31	Bringing Energy Information to the Instruction Set. , 2020, , .		0
32	Towards an Energy-Efficient Approximate Computer Implementation. Smart Innovation, Systems and Technologies, 2021, , 845-853.	0.6	0
33	Sensibilidade a erros em aplicações na arquitetura RISC-V. , 0, , .		0