Eugenio Calandrini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5059745/publications.pdf Version: 2024-02-01

		686830	676716
32	567	13	22
papers	citations	h-index	g-index
32	32	32	959
all docs	docs citations	times ranked	citing authors

3

#	Article	IF	CITATIONS
1	Limits of the quasiharmonic approximation in MgO: Volume dependence of optical modes investigated by infrared reflectivity and <i>ab initio</i> calculations. Physical Review B, 2021, 103, .	1.1	7
2	Galvanic Replacement Reaction as a Route to Prepare Nanoporous Aluminum for UV Plasmonics. Nanomaterials, 2020, 10, 102.	1.9	20
3	Atypical reversed pressure-induced phase transformation in Ge nanowires. Nanotechnology, 2020, 31, 235711.	1.3	1
4	Metallic Nanoporous Aluminum–Magnesium Alloy for UV-Enhanced Spectroscopy. Journal of Physical Chemistry C, 2019, 123, 20287-20296.	1.5	27
5	Nanoscale thermal gradients activated by antenna-enhanced molecular absorption in the mid-infrared. Applied Physics Letters, 2019, 114, 023105.	1.5	5
6	Multiphonon anharmonicity of MgO. Physical Review B, 2019, 99, .	1.1	13
7	Probing NaCl at High Pressure through Optical Studies and Ab Initio Calculations. Journal of Physical Chemistry C, 2019, 123, 15724-15728.	1.5	4
8	Nanoporous gold metamaterials for high sensitivity plasmonic sensing. Nanoscale Horizons, 2019, 4, 1153-1157.	4.1	46
9	Multiphonon anharmonicity in MgO an ionic binary compound. , 2019, , .		0
10	3D nanoporous antennas as a platform for high sensitivity IR plasmonic sensing. Optics Express, 2019, 27, 25912.	1.7	8
11	Thermoplasmonic Effect of Surface-Enhanced Infrared Absorption in Vertical Nanoantenna Arrays. Journal of Physical Chemistry C, 2018, 122, 13072-13081.	1.5	18
12	Magnetic hot-spot generation at optical frequencies: from plasmonic metamolecules to all-dielectric nanoclusters. Nanophotonics, 2018, 8, 45-62.	2.9	26
13	Fractal-Like Plasmonic Metamaterial with a Tailorable Plasma Frequency in the near-Infrared. ACS Photonics, 2018, 5, 3408-3414.	3.2	32
14	Fractal plasmonic metamaterial with tunable properties in the near-infrared. , 2018, , .		0
15	Electromagnetic field confinement in the gap of germanium nanoantennas with plasma wavelength of 4.5 micrometers. Proceedings of SPIE, 2017, , .	0.8	0
16	Boosting infrared energy transfer in 3D nanoporous gold antennas. Nanoscale, 2017, 9, 915-922.	2.8	42
17	Controlling the Heat Dissipation in Temperature-Matched Plasmonic Nanostructures. Nano Letters, 2017, 17, 5472-5480.	4.5	27

18 Mid-infrared n-Ge on Si plasmonic based microbolometer sensors. , 2017, , .

#	Article	IF	CITATIONS
19	n-Ge on Si for mid-infrared plasmonic sensors. , 2017, , .		5
20	Nanoporous gold decorated with silver nanoparticles as large area efficient SERS substrate. , 2017, , .		2
21	Efficient OAM generation at the nanoscale level by means of plasmonic vortex lens. , 2017, , .		0
22	Mapping the electromagnetic field confinement in the gap of germanium nanoantennas with plasma wavelength of 4.5 micrometers. Applied Physics Letters, 2016, 109, .	1.5	17
23	Modified three-dimensional nanoantennas for infrared hydrogen detection. Microelectronic Engineering, 2016, 162, 105-109.	1.1	9
24	Group-IV midinfrared plasmonics. Journal of Nanophotonics, 2015, 9, 093789.	0.4	27
25	Nanoporous gold leaves: preparation, optical characterization, and biosensing capabilities. , 2015, , .		0
26	An integrated superhydrophobic-plasmonic biosensor for mid-infrared protein detection at the femtomole level. Physical Chemistry Chemical Physics, 2015, 17, 21337-21342.	1.3	27
27	Engineered/tailored nanoporous gold structures for infrared plasmonics. Proceedings of SPIE, 2015, ,	0.8	1
28	Nanoporous gold leaves: preparation, optical characterization and plasmonic behavior in the visible and mid-infrared spectral regions. Optical Materials Express, 2015, 5, 2246.	1.6	13
29	Midinfrared Plasmon-Enhanced Spectroscopy with Germanium Antennas on Silicon Substrates. Nano Letters, 2015, 15, 7225-7231.	4.5	173
30	Mid-infrared plasmonic germanium antennas on silicon. , 2014, , .		1
31	Mid-infrared plasmonic platform based on heavily doped epitaxial Ge-on-Si: Retrieving the optical constants of thin Ge epilayers. , 2014, , .		5
32	Determination of the free carrier concentration in atomic-layer doped germanium thin films by infrared spectroscopy. Journal of Optics (United Kingdom), 2014, 16, 094010.	1.0	8