
Đ¢atyana Igorevna Odintsova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5059484/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Molecular Insights into the Role of Cysteine-Rich Peptides in Induced Resistance to Fusarium oxysporum Infection in Tomato Based on Transcriptome Profiling. International Journal of Molecular Sciences, 2021, 22, 5741.	4.1	10
2	Synthetic Oligopeptides Mimicking Î ³ -Core Regions of Cysteine-Rich Peptides of Solanum lycopersicum Possess Antimicrobial Activity against Human and Plant Pathogens. Current Issues in Molecular Biology, 2021, 43, 1226-1242.	2.4	7
3	Transcriptomic Analysis of Genes Involved in Plant Defense Response to the Cucumber Green Mottle Mosaic Virus Infection. Life, 2021, 11, 1064.	2.4	9
4	Defensins of Grasses: A Systematic Review. Biomolecules, 2020, 10, 1029.	4.0	14
5	Fragments of a Wheat Hevein-Like Antimicrobial Peptide Augment the Inhibitory Effect of a Triazole Fungicide on Spore Germination of Fusarium oxysporum and Alternaria solani. Antibiotics, 2020, 9, 870.	3.7	7
6	Hevein-Like Antimicrobial Peptides Wamps: Structure–Function Relationship in Antifungal Activity and Sensitization of Plant Pathogenic Fungi to Tebuconazole by WAMP-2-Derived Peptides. International Journal of Molecular Sciences, 2020, 21, 7912.	4.1	18
7	Predicting Antimicrobial and Other Cysteine-Rich Peptides in 1267 Plant Transcriptomes. Antibiotics, 2020, 9, 60.	3.7	15
8	Non-Specific Lipid Transfer Proteins in Triticum kiharae Dorof. et Migush.: Identification, Characterization and Expression Profiling in Response to Pathogens and Resistance Inducers. Pathogens, 2019, 8, 221.	2.8	15
9	Defensin-like peptides in wheat analyzed by whole-transcriptome sequencing: a focus on structural diversity and role in induced resistance. PeerJ, 2019, 7, e6125.	2.0	17
10	An Extract Purified from the Mycelium of a Tomato Wilt-Controlling Strain of Fusarium sambucinum Can Protect Wheat against Fusarium and Common Root Rots. Pathogens, 2018, 7, 61.	2.8	13
11	Defense peptide repertoire of Stellaria media predicted by high throughput next generation sequencing. Biochimie, 2017, 135, 15-27.	2.6	24
12	Hevein-like antimicrobial peptides of plants. Biochemistry (Moscow), 2017, 82, 1659-1674.	1.5	48
13	An Attenuated Strain of Cucumber Green Mottle Mosaic Virus as a Biological Control Agent against Pathogenic Viral Strains. American Journal of Plant Sciences, 2016, 07, 724-732.	0.8	16
14	A novel antifungal peptide from leaves of the weed Stellaria media L. Biochimie, 2015, 116, 125-132.	2.6	41
15	Novel proline-hydroxyproline glycopeptides from the dandelion (Taraxacum officinale Wigg.) flowers: de novo sequencing and biological activity. Plant Science, 2015, 238, 323-329.	3.6	15
16	Prediction of Leymus arenarius (L.) antimicrobial peptides based on de novo transcriptome assembly. Plant Molecular Biology, 2015, 89, 203-214.	3.9	20
17	Identification of a Novel Small Cysteine-Rich Protein in the Fraction from the Biocontrol Fusarium oxysporum Strain CS-20 that Mitigates Fusarium Wilt Symptoms and Triggers Defense Responses in Tomato. Frontiers in Plant Science, 2015, 6, 1207.	3.6	29
18	Novel antifungal α-hairpinin peptide from Stellaria media seeds: structure, biosynthesis, gene structure and evolution. Plant Molecular Biology, 2014, 84, 189-202.	3.9	40

#	Article	IF	CITATIONS
19	Novel mode of action of plant defense peptides–Âheveinâ€like antimicrobial peptides from wheat inhibit fungal metalloproteases. FEBS Journal, 2014, 281, 4754-4764.	4.7	56
20	Genes encoding 4â€Cys antimicrobial peptides in wheat <i><scp>T</scp>riticumÂkiharae</i> Dorof. et Migush.: multimodular structural organization, instraspecific variability, distribution and role in defence. FEBS Journal, 2013, 280, 3594-3608.	4.7	40
21	Genes encoding hevein-like defense peptides in wheat: Distribution, evolution, and role in stress response. Biochimie, 2012, 94, 1009-1016.	2.6	36
22	Plant Antimicrobial Peptides. Signaling and Communication in Plants, 2012, , 107-133.	0.7	17
23	Isolation, molecular cloning and antimicrobial activity of novel defensins from common chickweed (Stellaria media L.) seeds. Biochimie, 2011, 93, 450-456.	2.6	40
24	Solution structure of a defense peptide from wheat with a 10-cysteine motif. Biochemical and Biophysical Research Communications, 2011, 411, 14-18.	2.1	36
25	A novel antifungal heveinâ€ŧype peptide from <i>Triticum kiharae</i> seeds with a unique 10•ysteine motif. FEBS Journal, 2009, 276, 4266-4275.	4.7	75
26	Analysis of Triticum boeoticum and Triticum urartu seed defensins: To the problem of the origin of polyploid wheat genomes. Biochimie, 2008, 90, 939-946.	2.6	5
27	Seed defensins of barnyard grass Echinochloa crusgalli (L.) Beauv Biochimie, 2008, 90, 1667-1673.	2.6	45
28	Seed defensins from T. kiharae and related species: Genome localization of defensin-encoding genes. Biochimie, 2007, 89, 605-612.	2.6	29
29	Diversity of wheat anti-microbial peptides. Peptides, 2005, 26, 2064-2073.	2.4	145