Doo-Hwan Jung

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/505941/publications.pdf Version: 2024-02-01

Doo-HWAN LUNC

#	Article	IF	CITATIONS
1	Preparation of mesoporous activated carbon by preliminary oxidation of petroleum coke with hydrogen peroxide and its application in capacitive deionization. Desalination, 2022, 539, 115901.	4.0	7
2	Surface oxidation of petroleum pitch to improve mesopore ratio and specific surface area of activated carbon. Scientific Reports, 2021, 11, 1460.	1.6	9
3	The Effect of Oxygen Content in Binderless Cokes for High-Density Carbon Blocks from Coal Tar Pitch. Materials, 2021, 14, 1832.	1.3	6
4	Preparation of Isotropic Carbon Fibers from Kerosene-Purified Coal Tar Pitch by Co-Carbonization with Pyrolysis Fuel Oil. Materials, 2021, 14, 6280.	1.3	3
5	Mechanical and electrical properties of MCMB/Chopped carbon fiber composite with different bead size. Scientific Reports, 2019, 9, 7065.	1.6	7
6	Manufacture of high density carbon blocks by self-sintering coke produced via a two-stage heat treatment of coal tar. Heliyon, 2019, 5, e01341.	1.4	5
7	Preparation of activated carbon from needle coke via two-stage steam activation process. Materials Letters, 2019, 237, 22-25.	1.3	31
8	Improving the mechanical properties of a high density carbon block from mesocarbon microbeads according to oxidative stabilization. Scientific Reports, 2018, 8, 11064.	1.6	9
9	Performance of a MEA using patterned membrane with a directly coated electrode by the bar-coating method in a direct methanol fuel cell. International Journal of Hydrogen Energy, 2018, 43, 11386-11396.	3.8	12
10	Enhanced activity and durability of the oxygen reduction catalysts supported on the surface expanded tubular-type carbon nanofiber. Applied Catalysis B: Environmental, 2017, 217, 192-200.	10.8	5
11	Effects of Two-stage Heat Treatment on Delayed Coke and Study of Their Surface Texture Characteristics. Jom, 2017, 69, 2460-2466.	0.9	5
12	Methanol-Tolerant Platinum-Palladium Catalyst Supported on Nitrogen-Doped Carbon Nanofiber for High Concentration Direct Methanol Fuel Cells. Nanomaterials, 2016, 6, 148.	1.9	15
13	Activating needle coke to develop anode catalyst for direct methanol fuel cell. Carbon Letters, 2016, 20, 47-52.	3.3	1
14	The crystalline and microstructural transformations of two coal ashes and their quenched slags with similar chemical compositions during heat treatment. Journal of Industrial and Engineering Chemistry, 2015, 22, 110-119.	2.9	10
15	Performance and durability of MEA prepared with crosslinked ETFE-g-PSSA(DVB) membranes for direct methanol fuel cells using high concentration methanol. Journal of Membrane Science, 2014, 459, 12-21.	4.1	7
16	Improved performance using tungsten carbide/carbon nanofiber based anode catalysts for alkaline direct ethanol fuel cells. International Journal of Hydrogen Energy, 2014, 39, 15907-15912.	3.8	33
17	Long-term durability of radiation-grafted PFA-g-PSSA membranes for direct methanol fuel cells. Journal of Membrane Science, 2013, 447, 36-42.	4.1	18
18	Fabrication and performance of a ScMnSZ/LaSrCuFe cell with GDC interlayer for solid oxide fuel cells. Journal of Electroceramics, 2013, 30, 77-81.	0.8	0

#	Article	IF	CITATIONS
19	Effects of porous and dense electrode structures of membrane electrode assembly on durability of direct methanol fuel cells. International Journal of Hydrogen Energy, 2011, 36, 15313-15322.	3.8	17
20	Performance of Membrane Electrode Assembly for DMFC Prepared by Bar-Coating Method. Journal of the Korean Electrochemical Society, 2008, 11, 16-21.	0.1	2