John L Davy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5059266/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Prediction of random incidence sound absorption coefficients of porous materials. Applied Acoustics, 2022, 189, 108625.	3.3	6
2	The geometric mean is a superior frequency response averaging method for human body vibration. Ergonomics, 2021, 64, 273-283.	2.1	0
3	Mel frequency cepstral coefficient temporal feature integration for classifying squeak and rattle noise. Journal of the Acoustical Society of America, 2021, 150, 193-201.	1.1	11
4	The sound insulation and directivity of the sound radiation from double glazed windows. Journal of the Acoustical Society of America, 2020, 148, 2173-2181.	1.1	2
5	The Concept modeling method: An approach to optimize the structural dynamics of a vehicle body. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2020, 234, 2923-2932.	1.9	4
6	A review of the different approaches to predict the sound transmission loss of building partitions. Building Acoustics, 2020, 27, 253-279.	1.9	12
7	A Review of the Potential Impacts of Wind Turbine Noise in the Australian Context. Acoustics Australia, 2020, 48, 181-197.	2.4	6
8	Prediction of the acoustic effect of an interior trim porous material inside a rigid-walled car air cavity model. Applied Acoustics, 2020, 165, 107325.	3.3	14
9	Landmark-based audio fingerprinting system applied to vehicle squeak and rattle noises. Noise Control Engineering Journal, 2020, 68, 113-124.	0.3	1
10	Squeak and rattle noise classification using radial basis function neural networks. Noise Control Engineering Journal, 2020, 68, 283-293.	0.3	1
11	Two definitions of the inner product of modes and their use in calculating non-diffuse reverberant sound fields. Journal of the Acoustical Society of America, 2019, 145, 3330-3340.	1.1	2
12	Empirical corrections for predicting the sound insulation of double leaf cavity stud building elements with stiffer studs. Journal of the Acoustical Society of America, 2019, 145, 703-713.	1.1	6
13	Wind turbine sound limits: Current status and recommendations based on mitigating noise annoyance. Applied Acoustics, 2018, 140, 288-295.	3.3	23
14	A Review of the Possible Perceptual and Physiological Effects of Wind Turbine Noise. Trends in Hearing, 2018, 22, 233121651878955.	1.3	7
15	The influence of finite and infinite wall cavities on the sound insulation of double-leaf walls. Journal of the Acoustical Society of America, 2017, 141, 207-218.	1.1	4
16	Sound transmission loss of ETICS cladding systems considering the structure-borne transmission via the mechanical fixings: Numerical prediction model and experimental evaluation. Applied Acoustics, 2017, 122, 88-97.	3.3	19
17	Acoustic properties of multilayer sound absorbers with a 3D printed micro-perforated panel. Applied Acoustics, 2017, 121, 25-32.	3.3	115
18	Acoustic measurement of a 3D printed micro-perforated panel combined with a porous material. Measurement: Journal of the International Measurement Confederation, 2017, 104, 233-236.	5.0	45

JOHN L DAVY

#	Article	IF	CITATIONS
19	The sound insulation of single leaf finite size rectangular plywood panels with orthotropic frequency dependent bending stiffness. Journal of the Acoustical Society of America, 2016, 139, 520-528.	1.1	5
20	Prediction of the effect of porous sound-absorbing material inside a coupled plate cavity system. International Journal of Vehicle Noise and Vibration, 2016, 12, 314.	0.1	2
21	Predicting the absorption of perforated panels backed by resistive textiles. Noise Control Engineering Journal, 2016, 64, 259-267.	0.3	0
22	The transmitted and reflected waves due to the incidence of a forced wave on a junction. Building Acoustics, 2016, 23, 3-16.	1.9	0
23	Acoustic properties of a porous polycarbonate material produced by additive manufacturing. Materials Letters, 2016, 181, 296-299.	2.6	83
24	Prediction of the effect of porous sound-absorbing material inside a coupled plate cavity system. International Journal of Vehicle Noise and Vibration, 2016, 12, 314.	0.1	0
25	Predicting the sound insulation of plywood panels when treated with decoupled mass loaded barriers. Applied Acoustics, 2015, 91, 64-72.	3.3	8
26	The acoustic radiation impedance of a rectangular panel. Building and Environment, 2015, 92, 743-755.	6.9	14
27	Comment on "Relative variance of the mean squared pressure in multimode media: Rehabilitating former approaches―[]. Acoust. Soc. Am. 136, 2621–2629 (2014)]. Journal of the Acoustical Society of America, 2015, 137, 1598-1601.	1.1	0
28	The equivalent translational compliance of steel or wood studs and resilient channel bars. Journal of the Acoustical Society of America, 2015, 137, 1647-1657.	1.1	3
29	The damping of gypsum plaster board wooden stud cavity walls. Applied Acoustics, 2015, 88, 52-56.	3.3	4
30	Variations in measured sound transmission loss due to sample size and construction parameters. Applied Acoustics, 2015, 89, 166-177.	3.3	9
31	The average specific forced radiation wave impedance of a finite rectangular panel. Journal of the Acoustical Society of America, 2014, 136, 525-536.	1.1	7
32	The Influence of the Wall Cavity on the Transmission Loss of Wall Systems — Experimental Trends. Building Acoustics, 2013, 20, 87-105.	1.9	4
33	Predicting the Sound Insulation of Lightweight Sandwich Panels. Building Acoustics, 2013, 20, 177-192.	1.9	6
34	Sound transmission of cavity walls due to structure borne transmission via point and line connections. Journal of the Acoustical Society of America, 2012, 132, 814-821.	1.1	25
35	The prediction of flanking sound transmission below the critical frequency. Journal of the Acoustical Society of America, 2012, 132, 2359-2370.	1.1	9
36	An empirical model for the equivalent translational compliance of steel studs. Journal of the Acoustical Society of America, 2012, 131, 4615-4624.	1.1	5

John L Davy

#	Article	IF	CITATIONS
37	The improvement of a simple theoretical model for the prediction of the sound insulation of double leaf walls. Journal of the Acoustical Society of America, 2010, 127, 841-849.	1.1	34
38	The directivity of the sound radiation from panels and openings. Journal of the Acoustical Society of America, 2009, 125, 3795-3805.	1.1	5
39	The variance of the discrete frequency transmission function of a reverberant room. Journal of the Acoustical Society of America, 2009, 126, 1199-1206.	1.1	9
40	The forced radiation efficiency of finite size flat panels that are excited by incident sound. Journal of the Acoustical Society of America, 2009, 126, 694-702.	1.1	19
41	Predicting the sound insulation of single leaf walls: Extension of Cremer's model. Journal of the Acoustical Society of America, 2009, 126, 1871.	1.1	30
42	Predicting the Sound Insulation of Walls. Building Acoustics, 2009, 16, 1-20.	1.9	42
43	The directivity of the forced radiation of sound from panels and openings including the shadow zone. Proceedings of Meetings on Acoustics, 2008, , .	0.3	1
44	The modal and flow velocity corrections of microphone turbulence screens. Journal of Sound and Vibration, 2007, 306, 172-191.	3.9	2
45	Passive acoustic bubble sizing in sparged systems. Experiments in Fluids, 2001, 30, 672-682.	2.4	74
46	The Development of a Flush Mounted Microphone Turbulence Screen for Use in a Power Station Chimney Flue. Noise Control Engineering Journal, 1993, 41, 313.	0.3	2
47	Qualification of room diffusion for absorption measurements. Applied Acoustics, 1989, 28, 177-185.	3.3	4
48	The variance of the curvature of reverberant decays. Journal of Sound and Vibration, 1989, 128, 297-305.	3.9	1
49	The variance of reverberation time measurements due to loudspeaker position variation. Journal of Sound and Vibration, 1989, 132, 403-409.	3.9	6
50	Evaluating the lining of anechoic room. Journal of Sound and Vibration, 1989, 132, 411-422.	3.9	2
51	The effect of moving microphones and rotating diffusers on the variance of decay rate. Applied Acoustics, 1988, 24, 1-14.	3.3	4
52	The variance of decay rates at low frequencies. Applied Acoustics, 1988, 23, 63-79.	3.3	15
53	The statistical bandwidth of Butterworth filters. Journal of Sound and Vibration, 1987, 115, 539-549.	3.9	7
54	Improvements to formulae for the ensemble relative variance of random noise in a reverberation room. Journal of Sound and Vibration, 1987, 115, 145-161.	3.9	19

#	Article	IF	CITATIONS
55	The ensemble variance of random noise in a reverberation room. Journal of Sound and Vibration, 1986, 107, 361-373.	3.9	27
56	The relative variance of the transmission function of a reverberation room. Journal of Sound and Vibration, 1981, 77, 455-479.	3.9	37