
Kerry L Price

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5059216/publications.pdf Version: 2024-02-01

KEDDVI DDICE

#	Article	lF	CITATIONS
1	The M4 Helix Is Involved in $\hat{I}\pm7$ nACh Receptor Function. ACS Chemical Neuroscience, 2020, 11, 1406-1412.	1.7	11
2	Modulation of the Erwinia ligand-gated ion channel (ELIC) and the 5-HT3 receptor via a common vestibule site. ELife, 2020, 9, .	2.8	16
3	Characterization of a 5-HT ₃ –ELIC Chimera Revealing the Sites of Action of Modulators. ACS Chemical Neuroscience, 2018, 9, 1409-1415.	1.7	5
4	Subtle Differences among 5-HT ₃ AC, 5-HT ₃ AD, and 5-HT ₃ AE Receptors Are Revealed by Partial Agonists. ACS Chemical Neuroscience, 2017, 8, 1085-1091.	1.7	9
5	The Proton Responsiveness in the Extracellular Domain of GLIC Differs in the Presence of the ELIC Transmembrane Domain. Biochemistry, 2017, 56, 2134-2138.	1.2	2
6	Palonosetron–5-HT ₃ Receptor Interactions As Shown by a Binding Protein Cocrystal Structure. ACS Chemical Neuroscience, 2016, 7, 1641-1646.	1.7	23
7	Crotonic Acid Blocks the <i>Gloeobacter</i> Ligand-Gated Ion Channel (GLIC) via the Extracellular Domain. Biochemistry, 2016, 55, 5947-5951.	1.2	7
8	Varenicline Interactions at the 5-HT ₃ Receptor Ligand Binding Site are Revealed by 5-HTBP. ACS Chemical Neuroscience, 2015, 6, 1151-1157.	1.7	20
9	5-HT ₃ Receptor Brain-Type B-Subunits are Differentially Expressed in Heterologous Systems. ACS Chemical Neuroscience, 2015, 6, 1158-1164.	1.7	6
10	Disturbed Neuronal ER-Golgi Sorting of Unassembled Glycine Receptors Suggests Altered Subcellular Processing Is a Cause of Human Hyperekplexia. Journal of Neuroscience, 2015, 35, 422-437.	1.7	26
11	An atypical residue in the pore of Varroa destructor GABA-activated RDL receptors affects picrotoxin block and thymol modulation. Insect Biochemistry and Molecular Biology, 2014, 55, 19-25.	1.2	21
12	The Prokaryote Ligand-Gated Ion Channel ELIC Captured in a Pore Blocker-Bound Conformation by the Alzheimer's Disease Drug Memantine. Structure, 2014, 22, 1399-1407.	1.6	27
13	Phenylalanine in the Pore of the <i>Erwinia</i> Ligand-Gated Ion Channel Modulates Picrotoxinin Potency but Not Receptor Function. Biochemistry, 2014, 53, 6183-6188.	1.2	3
14	Multisite Binding of a General Anesthetic to the Prokaryotic Pentameric Erwinia chrysanthemi Ligand-gated Ion Channel (ELIC). Journal of Biological Chemistry, 2013, 288, 8355-8364.	1.6	90
15	Pentameric ligand-gated ion channel ELIC is activated by GABA and modulated by benzodiazepines. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E3028-34.	3.3	120
16	GABA Binding to an Insect GABA Receptor: A Molecular Dynamics and Mutagenesis Study. Biophysical Journal, 2012, 103, 2071-2081.	0.2	43
17	Cys-Loop Receptor Channel Blockers Also Block GLIC. Biophysical Journal, 2011, 101, 2912-2918.	0.2	20
18	A Cation-Ï€ Interaction at a Phenylalanine Residue in the Glycine Receptor Binding Site Is Conserved for Different Agonists. Molecular Pharmacology, 2011, 79, 742-748.	1.0	43

KERRY L PRICE

#	Article	IF	CITATIONS
19	Glutamine 57 at the Complementary Binding Site Face Is a Key Determinant of Morantel Selectivity for α7 Nicotinic Receptors. Journal of Biological Chemistry, 2009, 284, 21478-21487.	1.6	14
20	5-Fluorotryptamine is a partial agonist at 5-HT3 receptors, and reveals that size and electronegativity at the 5 position of tryptamine are critical for efficient receptor function. European Journal of Pharmacology, 2008, 580, 291-297.	1.7	16
21	A Hydrogen Bond in Loop A Is Critical for the Binding and Function of the 5-HT ₃ Receptor. Biochemistry, 2008, 47, 6370-6377.	1.2	46
22	Transducing Agonist Binding to Channel Gating Involves Different Interactions in 5-HT3 and GABAC Receptors. Journal of Biological Chemistry, 2007, 282, 25623-25630.	1.6	35
23	Defining the roles of Asn-128, Glu-129 and Phe-130 in loop A of the 5-HT3receptor. Molecular Membrane Biology, 2006, 23, 442-451.	2.0	29
24	Exploring the Binding of Serotonin to the 5-HT3Receptor by Density Functional Theory. Journal of Physical Chemistry B, 2006, 110, 26313-26319.	1.2	10
25	FlexStation examination of 5-HT3 receptor function using Ca2+- and membrane potential-sensitive dyes: Advantages and potential problems. Journal of Neuroscience Methods, 2005, 149, 172-177.	1.3	31
26	Locating an Antagonist in the 5-HT3 Receptor Binding Site Using Modeling and Radioligand Binding. Journal of Biological Chemistry, 2005, 280, 20476-20482.	1.6	69
27	Tyrosine Residues That Control Binding and Gating in the 5-Hydroxytryptamine3 Receptor Revealed by Unnatural Amino Acid Mutagenesis. Journal of Neuroscience, 2004, 24, 9097-9104.	1.7	90
28	The Role of Tyrosine Residues in the Extracellular Domain of the 5-Hydroxytryptamine3 Receptor. Journal of Biological Chemistry, 2004, 279, 23294-23301.	1.6	47
29	Prediction of 5-HT3 Receptor Agonist-Binding Residues Using Homology Modeling. Biophysical Journal, 2003, 84, 2338-2344.	0.2	97