Agnieszka KyzioÅ,

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5059212/publications.pdf

Version: 2024-02-01

236925 197818 58 2,566 25 49 g-index citations h-index papers 60 60 60 4328 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Development of Noncytotoxic Chitosan–Gold Nanocomposites as Efficient Antibacterial Materials. ACS Applied Materials & Samp; Interfaces, 2015, 7, 1087-1099.	8.0	258
2	Engineering of relevant photodynamic processes through structural modifications of metallotetrapyrrolic photosensitizers. Coordination Chemistry Reviews, 2016, 325, 67-101.	18.8	222
3	Visible light inactivation of bacteria and fungi by modified titanium dioxide. Photochemical and Photobiological Sciences, 2007, 6, 642-648.	2.9	207
4	Singlet Oxygen Photogeneration at Surface Modified Titanium Dioxide. Journal of the American Chemical Society, 2006, 128, 15574-15575.	13.7	194
5	Preparation and characterization of chitosan–silver nanocomposite films and their antibacterial activity against <i>Staphylococcus aureus</i> . Nanotechnology, 2013, 24, 015101.	2.6	124
6	Bioinorganic antimicrobial strategies in the resistance era. Coordination Chemistry Reviews, 2017, 351, 76-117.	18.8	124
7	Probing the Modes of Antibacterial Activity of Chitosan. Effects of pH and Molecular Weight on Chitosan Interactions with Membrane Lipids in Langmuir Films. Biomacromolecules, 2011, 12, 4144-4152.	5.4	114
8	Development of noncytotoxic silver–chitosan nanocomposites for efficient control of biofilm forming microbes. RSC Advances, 2017, 7, 52398-52413.	3.6	87
9	Preparation and characterization of electrospun alginate nanofibers loaded with ciprofloxacin hydrochloride. European Polymer Journal, 2017, 96, 350-360.	5.4	79
10	Green Synthesis of Chitosanâ€Stabilized Copper Nanoparticles. European Journal of Inorganic Chemistry, 2013, 2013, 4940-4947.	2.0	72
11	Copper(<scp>i</scp>) complexes with phosphine derived from sparfloxacin. Part II: a first insight into the cytotoxic action mode. Dalton Transactions, 2016, 45, 5052-5063.	3.3	55
12	Bactericidal Effect of Gold–Chitosan Nanocomposites in Coculture Models of Pathogenic Bacteria and Human Macrophages. ACS Applied Materials & Empty (1997) (1998	8.0	51
13	Photodynamic activity of platinum(IV) chloride surface-modified TiO2 irradiated with visible light. Free Radical Biology and Medicine, 2008, 44, 1120-1130.	2.9	48
14	Chitosan as a subphase disturbant of membrane lipid monolayers. The effect of temperature at varying pH: I. DPPG. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 434, 349-358.	4.7	48
15	Structure, characterization and cytotoxicity study on plasma surface modified Ti–6Al–4V and γ-TiAl alloys. Chemical Engineering Journal, 2014, 240, 516-526.	12.7	44
16	Copper(<scp>i</scp>) complexes with phosphine derived from sparfloxacin. Part I – structures, spectroscopic properties and cytotoxicity. Dalton Transactions, 2015, 44, 12688-12699.	3.3	44
17	Chitosan as a subphase disturbant of membrane lipid monolayers. The effect of temperature at varying pH: II. DPPC and cholesterol. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 434, 359-364.	4.7	42
18	Chitosan-based nanocomposites for the repair of bone defects. Nanomedicine: Nanotechnology, Biology, and Medicine, 2017, 13, 2231-2240.	3.3	42

#	Article	IF	CITATIONS
19	Tackling microbial infections and increasing resistance involving formulations based on antimicrobial polymers. Chemical Engineering Journal, 2020, 385, 123888.	12.7	40
20	Study on inhibitory activity of chitosan-based materials against biofilm producing <i>Pseudomonas</i> aeruginosa strains. Journal of Biomaterials Applications, 2015, 30, 269-278.	2.4	39
21	New copper(I) complexes bearing lomefloxacin motif: Spectroscopic properties, in vitro cytotoxicity and interactions with DNA and human serum albumin. Journal of Inorganic Biochemistry, 2016, 165, 25-35.	3.5	37
22	Preparation and characterization of alginate/chitosan formulations for ciprofloxacin-controlled delivery. Journal of Biomaterials Applications, 2017, 32, 162-174.	2.4	36
23	Copper(<scp>i</scp>) complexes with phosphine derived from sparfloxacin. Part III: multifaceted cell death and preliminary study of liposomal formulation of selected copper(<scp>i</scp>) complexes. Dalton Transactions, 2018, 47, 1981-1992.	3.3	36
24	Phosphine derivatives of ciprofloxacin and norfloxacin, a new class of potential therapeutic agents. New Journal of Chemistry, 2014, 38, 1062.	2.8	31
25	Copper(I) complexes with phosphines P(p-OCH3-Ph)2CH2OH and P(p-OCH3-Ph)2CH2SarGly. Synthesis, multimodal DNA interactions, and prooxidative and in vitro antiproliferative activity. Journal of Inorganic Biochemistry, 2020, 203, 110926.	3.5	29
26	Copper(<scp>I</scp>) (Pseudo)Halide Complexes with Neocuproine and Aminomethylphosphines Derived from Morpholine and Thiomorpholine – <i>In Vitro</i> Cytotoxic and Antimicrobial Activity and the Interactions with <scp>DNA</scp> and Serum Albumins. Chemical Biology and Drug Design, 2013, 82, 579-586.	3.2	25
27	Phosphine derivatives of sparfloxacin – Synthesis, structures and in vitro activity. Journal of Molecular Structure, 2015, 1096, 55-63.	3.6	24
28	Perspectives of molecular and nanostructured systems with d- and f-block metals in photogeneration of reactive oxygen species for medical strategies. Coordination Chemistry Reviews, 2019, 398, 113012.	18.8	23
29	Selective Cu(I) complex with phosphine-peptide (SarGly) conjugate contra breast cancer: Synthesis, spectroscopic characterization and insight into cytotoxic action. Journal of Inorganic Biochemistry, 2018, 186, 162-175.	3.5	22
30	Towards plant-mediated chemistry – Au nanoparticles obtained using aqueous extract of Rosa damascena and their biological activity in vitro. Journal of Inorganic Biochemistry, 2021, 214, 111300.	3.5	22
31	Towards prevention of biofilm formation: Ti6Al7Nb modified with nanocomposite layers of chitosan and Ag/Au nanoparticles. Applied Surface Science, 2021, 557, 149795.	6.1	22
32	Polymeric micelle-mediated delivery of half-sandwich ruthenium(II) complexes with phosphanes derived from fluoroloquinolones for lung adenocarcinoma treatment. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 128, 69-81.	4.3	21
33	Interaction of methotrexate, an anticancer agent, with copper(II) ions: coordination pattern, DNA-cleaving properties and cytotoxic studies. Medicinal Chemistry Research, 2015, 24, 115-123.	2.4	19
34	Cul and Cull complexes with phosphine derivatives of fluoroquinolone antibiotics – A comparative study on the cytotoxic mode of action. Journal of Inorganic Biochemistry, 2018, 181, 1-10.	3.5	19
35	Anticancer potency of novel organometallic Ir(<scp>iii</scp>) complexes with phosphine derivatives of fluoroquinolones encapsulated in polymeric micelles. Inorganic Chemistry Frontiers, 2020, 7, 3386-3401.	6.0	19
36	Ruthenium(II) piano stool coordination compounds with aminomethylphosphanes: Synthesis, characterisation and preliminary biological study in vitro. Journal of Inorganic Biochemistry, 2017, 170, 178-187.	3.5	18

#	Article	IF	CITATIONS
37	Relationship between copper(<scp>ii</scp>) complexes with FomA adhesin fragments of <i>F. nucleatum</i> and colorectal cancer. Coordination pattern and ability to promote ROS production. Dalton Transactions, 2018, 47, 5445-5458.	3.3	18
38	Synthesis and characterization of copper(I) coordination compounds with (1-(2-pyridylazo)-2-naphthol) and (4-(2-pyridylazo)resorcinol). Polyhedron, 2014, 68, 357-364.	2.2	17
39	Surface Functionalization With Biopolymers via Plasma-Assisted Surface Grafting and Plasma-Induced Graft Polymerization—Materials for Biomedical Applications. , 2018, , 115-151.		16
40	Antibacterial composite hybrid coatings of veterinary medical implants. Materials Science and Engineering C, 2020, 112, 110968.	7.3	16
41	ROS-mediated lipid peroxidation as a result of Cu(<scp>ii</scp>) interaction with FomA protein fragments of <i>F. nucleatum</i> : relevance to colorectal carcinogenesis. Metallomics, 2019, 11, 2066-2077.	2.4	15
42	New ruthenium(<scp>ii</scp>) coordination compounds possessing bidentate aminomethylphosphane ligands: synthesis, characterization and preliminary biological study in vitro. Dalton Transactions, 2015, 44, 13969-13978.	3.3	14
43	AM3 inhibits LPS-induced iNOS expression in mice. International Immunopharmacology, 2005, 5, 1165-1170.	3.8	11
44	Chitosan-based coatings in the prevention of intravascular catheter-associated infections. Journal of Biomaterials Applications, 2018, 32, 725-737.	2.4	11
45	Physicochemical and Biological Activity Analysis of Low-Density Polyethylene Substrate Modified by Multi-Layer Coatings Based on DLC Structures, Obtained Using RF CVD Method. Coatings, 2018, 8, 135.	2.6	11
46	Evaluation of anticancer activity in vitro of a stable copper(I) complex with phosphine-peptide conjugate. Scientific Reports, 2021, 11, 23943.	3.3	11
47	Unexpected formation of [Ru(l· ⁵ 6/sup>6/sup	b>)< <u>ş</u> ub>2	O} <su< td=""></su<>
48	Cu(II) Complexes with FomA Protein Fragments of <i>Fusobacterium Nucleatum</i> Increase Oxidative Stress and Malondialdehyde Level. Chemical Research in Toxicology, 2019, 32, 2227-2237.	3. 3	10
49	Impact of chitosan/noble metals-based coatings on the plasmochemically activated surface of NiTi alloy. Materials Chemistry and Physics, 2020, 248, 122931.	4.0	7
50	Synthesis, structural characterization, docking simulation and in vitro antiproliferative activity of the new gold(III) complex with 2-pyridineethanol. Journal of Inorganic Biochemistry, 2021, 215, 111311.	3.5	7
51	Dual-purpose surface functionalization of Ti-6Al-7Nb involving oxygen plasma treatment and Si-DLC or chitosan-based coatings. Materials Science and Engineering C, 2021, 121, 111848.	7.3	7
52	Electrostatic self-assembly approach in the deposition of bio-functional chitosan-based layers enriched with caffeic acid on Ti-6Al-7Nb alloys by alternate immersion., 2022, 136, 212791.		7
53	Effects of the Selected Iminosugar Derivatives on <i>Pseudomonas aeruginosa </i> Biofilm Formation. Microbial Drug Resistance, 2016, 22, 638-645.	2.0	6
54	Tertiary to secondary reduction of aminomethylphosphane derived from 1-ethylpiperazine as a result of its coordination to ruthenium(II) centre – The first insight into the nature of process. Journal of Molecular Structure, 2016, 1121, 104-110.	3.6	5

#	Article	IF	CITATION
55	Impact of the Cu(II) ions on the chemical and biological properties of goserelin $\hat{a} \in \text{``coordination}$ pattern, DNA degradation, oxidative reactivity and in vitro cytotoxicity. Journal of Inorganic Biochemistry, 2017, 175, 167-178.	3.5	5
56	Two out of Three Musketeers Fight against Cancer: Synthesis, Physicochemical, and Biological Properties of Phosphino Cul, Rull, Irlll Complexes. Pharmaceuticals, 2022, 15, 169.	3.8	5
57	New trends in the application of laser flash photolysis – case studies. Journal of Coordination Chemistry, 2010, 63, 2695-2714.	2.2	4
58	Synthesis, physicochemical characterization and antiproliferative activity of phosphino Ru(<scp>ii</scp>) and Ir(<scp>iii</scp>) complexes. Dalton Transactions, 2022, 51, 8605-8617.	3.3	3