List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5058722/publications.pdf Version: 2024-02-01

ΙμΝΙΙΝΟ ΔΝ

#	Article	IF	CITATIONS
1	Characteristics, source apportionment and contribution of VOCs to ozone formation in Wuhan, Central China. Atmospheric Environment, 2018, 192, 55-71.	1.9	214
2	Characteristics and formation mechanism of continuous hazes in China: a case study during the autumn of 2014 in the North China Plain. Atmospheric Chemistry and Physics, 2015, 15, 8165-8178.	1.9	192
3	VOC characteristics, sources and contributions to SOA formation during haze events in Wuhan, Central China. Science of the Total Environment, 2019, 650, 2624-2639.	3.9	169
4	Formation mechanism of continuous extreme haze episodes in the megacity Beijing, China, in January 2013. Atmospheric Research, 2015, 155, 192-203.	1.8	168
5	Characterization and sources of volatile organic compounds (VOCs) and their related changes during ozone pollution days in 2016 in Beijing, China. Environmental Pollution, 2020, 257, 113599.	3.7	146
6	Characteristics and source apportionment of PM 2.5 during persistent extreme haze events in Chengdu, southwest China. Environmental Pollution, 2017, 230, 718-729.	3.7	126
7	Source Apportionment and Secondary Transformation of Atmospheric Nonmethane Hydrocarbons in Chengdu, Southwest China. Journal of Geophysical Research D: Atmospheres, 2018, 123, 9741-9763.	1.2	108
8	Comparison of atmospheric nitrous acid during severe haze and clean periods in Beijing, China. Atmospheric Environment, 2016, 124, 199-206.	1.9	95
9	HONO Budget and Its Role in Nitrate Formation in the Rural North China Plain. Environmental Science & Technology, 2020, 54, 11048-11057.	4.6	74
10	Characteristics, secondary transformation, and health risk assessment of ambient volatile organic compounds (VOCs) in urban Beijing, China. Atmospheric Pollution Research, 2021, 12, 33-46.	1.8	69
11	Characteristics of one-year observation of VOCs, NOx, and O3 at an urban site in Wuhan, China. Journal of Environmental Sciences, 2019, 79, 297-310.	3.2	68
12	Impacts of potential HONO sources on the concentrations of oxidants and secondary organic aerosols in the Beijing-Tianjin-Hebei region of China. Science of the Total Environment, 2019, 647, 836-852.	3.9	66
13	Investigating the characteristics and source analyses of PM2.5 seasonal variations in Chengdu, Southwest China. Chemosphere, 2020, 243, 125267.	4.2	65
14	Impacts of HONO sources on the air quality in Beijing, Tianjin and Hebei Province of China. Atmospheric Environment, 2011, 45, 4735-4744.	1.9	63
15	Evaluation and intercomparison of meteorological predictions by five MM5-PBL parameterizations in combination with three land-surface models. Atmospheric Environment, 2008, 42, 233-249.	1.9	62
16	Variations and sources of nitrous acid (HONO) during a severe pollution episode in Beijing in winter 2016. Science of the Total Environment, 2019, 648, 253-262.	3.9	62
17	An overview of emissions of SO 2 and NO x and the long-range transport of oxidized sulfur and nitrogen pollutants in East Asia. Journal of Environmental Sciences, 2016, 44, 13-25.	3.2	60
18	Enhancements of major aerosol components due to additional HONO sources in the North China Plain and implications for visibility and haze. Advances in Atmospheric Sciences, 2013, 30, 57-66.	1.9	57

#	Article	IF	CITATIONS
19	VOC characteristics, chemical reactivity and sources in urban Wuhan, central China. Atmospheric Environment, 2020, 224, 117340.	1.9	57
20	Ground observations of a strong dust storm in Beijing in March 2002. Journal of Geophysical Research, 2005, 110, .	3.3	55
21	Development of the RAQM2 aerosol chemical transport model and predictions of the Northeast Asian aerosol mass, size, chemistry, and mixing type. Atmospheric Chemistry and Physics, 2012, 12, 11833-11856.	1.9	55
22	Simulations of monthly mean nitrate concentrations in precipitation over East Asia. Atmospheric Environment, 2002, 36, 4159-4171.	1.9	49
23	Characteristics and formation mechanism of regional haze episodes in the Pearl River Delta of China. Journal of Environmental Sciences, 2018, 63, 236-249.	3.2	49
24	Impacts of an unknown daytime HONO source on the mixing ratio and budget of HONO, and hydroxyl, hydroperoxyl, and organic peroxy radicals, in the coastal regions of China. Atmospheric Chemistry and Physics, 2015, 15, 9381-9398.	1.9	46
25	Summertime aerosol volatility measurements in Beijing, China. Atmospheric Chemistry and Physics, 2019, 19, 10205-10216.	1.9	45
26	Chemical characterization of size-resolved aerosols in four seasons and hazy days in the megacity Beijing of China. Journal of Environmental Sciences, 2015, 32, 155-167.	3.2	40
27	Impacts of six potential HONO sources on HOx budgets and SOA formation during a wintertime heavy haze period in the North China Plain. Science of the Total Environment, 2019, 681, 110-123.	3.9	40
28	Characteristics and formation mechanism of persistent extreme haze pollution events in Chengdu, southwestern China. Environmental Pollution, 2019, 251, 1-12.	3.7	40
29	Characteristics, source apportionment and chemical conversions of VOCs based on a comprehensive summer observation experiment in Beijing. Atmospheric Pollution Research, 2021, 12, 230-241.	1.8	40
30	Impacts of a strong cold front on concentrations of HONO, HCHO, O3, and NO2 in the heavy traffic urban area of Beijing. Atmospheric Environment, 2009, 43, 3454-3459.	1.9	37
31	Local and distant source contributions to secondary organic aerosol in the Beijing urban area in summer. Atmospheric Environment, 2016, 124, 176-185.	1.9	37
32	Impacts of the eruption of Miyakejima Volcano on air quality over far east Asia. Journal of Geophysical Research, 2004, 109, n/a-n/a.	3.3	34
33	Evidence for Strong HONO Emission from Fertilized Agricultural Fields and its Remarkable Impact on Regional O ₃ Pollution in the Summer North China Plain. ACS Earth and Space Chemistry, 2021, 5, 340-347.	1.2	32
34	Elucidating the pollution characteristics of nitrate, sulfate and ammonium in PM _{2.5} in Chengdu, southwest China, based on 3-year measurements. Atmospheric Chemistry and Physics, 2020, 20, 11181-11199.	1.9	32
35	Effects of NO x and VOCs from five emission sources on summer surface O3 over the Beijing-Tianjin-Hebei region. Advances in Atmospheric Sciences, 2014, 31, 787-800.	1.9	30
36	Improving new particle formation simulation by coupling a volatility-basis set (VBS) organic aerosol module in NAQPMS+APM. Atmospheric Environment, 2019, 204, 1-11.	1.9	28

#	Article	IF	CITATIONS
37	Aerosol optical properties under different pollution levels in the Pearl River Delta (PRD) region of China. Journal of Environmental Sciences, 2020, 87, 49-59.	3.2	28
38	Seasonal effects of additional HONO sources and the heterogeneous reactions of N2O5 on nitrate in the North China Plain. Science of the Total Environment, 2019, 690, 97-107.	3.9	24
39	Amplified role of potential HONO sources in O ₃ formation in North China Plain during autumn haze aggravating processes. Atmospheric Chemistry and Physics, 2022, 22, 3275-3302.	1.9	23
40	Simulated impacts of SO2 emissions from the Miyake volcano on concentration and deposition of sulfur oxides in September and October of 2000. Atmospheric Environment, 2003, 37, 3039-3046.	1.9	22
41	Impacts of uncertainty in AVOC emissions on the summer ROx budget and ozone production rate in the three most rapidly-developing economic growth regions of China. Advances in Atmospheric Sciences, 2014, 31, 1331-1342.	1.9	21
42	Effect of potential HONO sources on peroxyacetyl nitrate (PAN) formation in eastern China in winter. Journal of Environmental Sciences, 2020, 94, 81-87.	3.2	18
43	Impacts of additional HONO sources on O ₃ and PM _{2.5} chemical coupling and control strategies in the Beijing–Tianjin–Hebei region of China. Tellus, Series B: Chemical and Physical Meteorology, 2022, 67, 23930.	0.8	17
44	A Field Experiment on the Small-Scale Variability of Rainfall Based on a Network of Micro Rain Radars and Rain Gauges. Journal of Applied Meteorology and Climatology, 2015, 54, 243-255.	0.6	16
45	Nocturnal Low-level Winds and Their Impacts on Particulate Matter over the Beijing Area. Advances in Atmospheric Sciences, 2018, 35, 1455-1468.	1.9	16
46	Raindrop Size Distribution Characteristics for Tropical Cyclones and Meiyu-Baiu Fronts Impacting Tokyo, Japan. Atmosphere, 2019, 10, 391.	1.0	16
47	Global–regional nested simulation of particle number concentration by combing microphysical processes with an evolving organic aerosol module. Atmospheric Chemistry and Physics, 2021, 21, 9343-9366.	1.9	16
48	A comprehensive investigation on volatile organic compounds (VOCs) in 2018 in Beijing, China: Characteristics, sources and behaviours in response to O3 formation. Science of the Total Environment, 2022, 806, 150247.	3.9	16
49	Uncertainty in the uptake coefficient for HONO formation on soot and its impacts on concentrations of major chemical components in the Beijing–Tianjin–Hebei region. Atmospheric Environment, 2014, 84, 163-171.	1.9	15
50	Insights into the phenomenon of an explosive growth and sharp decline in haze: A case study in Beijing. Journal of Environmental Sciences, 2019, 84, 122-132.	3.2	14
51	Chemical characteristics, source apportionment, and regional contribution of PM2.5 in Zhangjiakou, Northern China: A multiple sampling sites observation and modeling perspective. Environmental Advances, 2021, 3, 100034.	2.2	14
52	Effects of additional HONO sources on visibility over the North China Plain. Advances in Atmospheric Sciences, 2014, 31, 1221-1232.	1.9	13
53	Observation of wind shear during evening transition and an estimation of submicron aerosol concentrations in Beijing using a Doppler wind lidar. Journal of Meteorological Research, 2017, 31, 350-362.	0.9	13
54	Cable-car measurements of vertical aerosol profiles impacted by mountain-valley breezes in Lushan Mountain, East China. Science of the Total Environment, 2021, 768, 144198.	3.9	13

#	Article	IF	CITATIONS
55	Synergistic impacts of anthropogenic and biogenic emissions on summer surface O3 in East Asia. Journal of Environmental Sciences, 2013, 25, 520-530.	3.2	12
56	Key role of atmospheric water content in the formation of regional haze in southern China. Atmospheric Environment, 2019, 216, 116918.	1.9	12
57	Numerical Regional Air Quality Forecast Tests over the Mainland of China. Water, Air, and Soil Pollution, 2001, 130, 1781-1786.	1.1	11
58	Relationship between aerosol transport routes and red tide occurrences in the East China Sea. Environmental Earth Sciences, 2013, 69, 1499-1508.	1.3	10
59	Sensitivity of air quality model prediction to parameterization of vertical eddy diffusivity. Environmental Fluid Mechanics, 2009, 9, 73-89.	0.7	7
60	Observation of nocturnal low-level wind shear and particulate matter in urban Beijing using a Doppler wind lidar. Atmospheric and Oceanic Science Letters, 2017, 10, 411-417.	0.5	7
61	Global and Regional Patterns of Soil Nitrous Acid Emissions and Their Acceleration of Rural Photochemical Reactions. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	1.2	7
62	A Literature Review of Uncertainties in Studies of Critical Loads for Acidic Deposition. Water, Air, and Soil Pollution, 2001, 130, 1205-1210.	1.1	6
63	Impacts of Additional HONO Sources on Concentrations and Deposition of NO _y in the Beijing-Tianjin-Hebei Region of China. Scientific Online Letters on the Atmosphere, 2015, 11, 36-42.	0.6	6
64	Effect of vertical parameterization of a missing daytime source of HONO on concentrations of HONO, O3 and secondary organic aerosols in eastern China. Atmospheric Environment, 2020, 226, 117208.	1.9	6
65	Title is missing!. Water, Air, and Soil Pollution, 1999, 110, 255-272.	1.1	5
66	Impacts of Photoexcited NO2 Chemistry and Heterogeneous Reactions on Concentrations of O3 and NOy in Beijing,Tianjin and Hebei Province of China. , 0, , .		5
67	Validation of the Institute of Atmospheric Physics emergency response model with the meteorological towers measurements and SF6 diffusion and pool fire experiments. Atmospheric Environment, 2013, 81, 60-67.	1.9	5
68	An observational study on vertical raindrop size distributions during stratiform rain in a semiarid plateau climate zone. Atmospheric and Oceanic Science Letters, 2016, 9, 178-184.	0.5	5
69	Long-term winter observation of nitrous acid in the urban area of Beijing. Journal of Environmental Sciences, 2022, 114, 334-342.	3.2	5
70	Influence on the temperature estimation of the planetary boundary layer scheme with different minimum eddy diffusivity in WRF v3.9.1.1. Geoscientific Model Development, 2021, 14, 6135-6153.	1.3	4
71	A one-year study on black carbon in urban Beijing: Concentrations, sources and implications on visibility. Atmospheric Pollution Research, 2022, 13, 101307.	1.8	4
72	Impacts of uncertainties in base ation deposition on the assessment of critical loads for acid deposition. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2000, 35, 1915-1921.	0.9	2

#	Article	IF	CITATIONS
73	Influence of vertical eddy diffusivity parameterization on daily and monthly mean concentrations of O3 and NOy. Advances in Atmospheric Sciences, 2007, 24, 573-580.	1.9	2
74	Satellite estimates and subpixel variability of rainfall in a semi-arid grassland. Atmospheric and Oceanic Science Letters, 2021, 14, 100055.	0.5	2
75	High crop yield losses induced by potential HONO sources — A modelling study in the North China Plain. Science of the Total Environment, 2022, 803, 149929.	3.9	2
76	A Literature Review of Uncertainties in Studies of Critical Loads for Acidic Deposition. , 2001, , 1205-1210.		2
77	Strong photochemical reactions in greenhouses after fertilization and their implications. Atmospheric Environment, 2019, 214, 116821.	1.9	1