Wu Lizhu

List of Publications by Citations

Source: https://exaly.com/author-pdf/5058497/wu-lizhu-publications-by-citations.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

380 24,847 84 145 h-index g-index citations papers 10.5 410 29,432 7.4 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
380	Alkali-Assisted Synthesis of Nitrogen Deficient Graphitic Carbon Nitride with Tunable Band Structures for Efficient Visible-Light-Driven Hydrogen Evolution. <i>Advanced Materials</i> , 2017 , 29, 1605148	3 ²⁴	951
379	Design strategies of fluorescent probes for selective detection among biothiols. <i>Chemical Society Reviews</i> , 2015 , 44, 6143-60	58.5	587
378	Nitrogen-Doped Porous Carbon Nanosheets Templated from g-C3 N4 as Metal-Free Electrocatalysts for Efficient Oxygen Reduction Reaction. <i>Advanced Materials</i> , 2016 , 28, 5080-6	24	573
377	Well-Dispersed ZIF-Derived Co,N-Co-doped Carbon Nanoframes through Mesoporous-Silica-Protected Calcination as Efficient Oxygen Reduction Electrocatalysts. <i>Advanced Materials</i> , 2016 , 28, 1668-74	24	558
376	Ni3FeN Nanoparticles Derived from Ultrathin NiFe-Layered Double Hydroxide Nanosheets: An Efficient Overall Water Splitting Electrocatalyst. <i>Advanced Energy Materials</i> , 2016 , 6, 1502585	21.8	522
375	Carbon quantum dots/TiO2 composites for efficient photocatalytic hydrogen evolution. <i>Journal of Materials Chemistry A</i> , 2014 , 2, 3344	13	510
374	Smart Utilization of Carbon Dots in Semiconductor Photocatalysis. <i>Advanced Materials</i> , 2016 , 28, 9454-9	94747	483
373	Tuning Oxygen Vacancies in Ultrathin TiO Nanosheets to Boost Photocatalytic Nitrogen Fixation up to 700 nm. <i>Advanced Materials</i> , 2019 , 31, e1806482	24	452
372	Ultrafine NiO Nanosheets Stabilized by TiO2 from Monolayer NiTi-LDH Precursors: An Active Water Oxidation Electrocatalyst. <i>Journal of the American Chemical Society</i> , 2016 , 138, 6517-24	16.4	452
371	Defect-Rich Ultrathin ZnAl-Layered Double Hydroxide Nanosheets for Efficient Photoreduction of CO2 to CO with Water. <i>Advanced Materials</i> , 2015 , 27, 7824-31	24	445
370	Layered-Double-Hydroxide Nanosheets as Efficient Visible-Light-Driven Photocatalysts for Dinitrogen Fixation. <i>Advanced Materials</i> , 2017 , 29, 1703828	24	342
369	Enhanced Driving Force and Charge Separation Efficiency of Protonated g-C3N4 for Photocatalytic O2 Evolution. <i>ACS Catalysis</i> , 2015 , 5, 6973-6979	13.1	333
368	Biological Applications of Supramolecular Assemblies Designed for Excitation Energy Transfer. <i>Chemical Reviews</i> , 2015 , 115, 7502-42	68.1	307
367	A highly efficient photocatalytic system for hydrogen production by a robust hydrogenase mimic in an aqueous solution. <i>Angewandte Chemie - International Edition</i> , 2011 , 50, 3193-7	16.4	290
366	Layered Double Hydroxide Nanostructured Photocatalysts for Renewable Energy Production. <i>Advanced Energy Materials</i> , 2016 , 6, 1501974	21.8	289
365	NiFe Layered Double Hydroxide Nanoparticles on Co,N-Codoped Carbon Nanoframes as Efficient Bifunctional Catalysts for Rechargeable ZincAir Batteries. <i>Advanced Energy Materials</i> , 2017 , 7, 1700467	21.8	280
364	Photoelectrochemically Active and Environmentally Stable CsPbBr3/TiO2 Core/Shell Nanocrystals. <i>Advanced Functional Materials</i> , 2018 , 28, 1704288	15.6	280

(2019-2015)

363	External Oxidant-Free Oxidative Cross-Coupling: A Photoredox Cobalt-Catalyzed Aromatic C-H Thiolation for Constructing C-S Bonds. <i>Journal of the American Chemical Society</i> , 2015 , 137, 9273-80	16.4	265
362	Self-Assembled Au/CdSe Nanocrystal Clusters for Plasmon-Mediated Photocatalytic Hydrogen Evolution. <i>Advanced Materials</i> , 2017 , 29, 1700803	24	258
361	Graphdiyne: A Metal-Free Material as Hole Transfer Layer To Fabricate Quantum Dot-Sensitized Photocathodes for Hydrogen Production. <i>Journal of the American Chemical Society</i> , 2016 , 138, 3954-7	16.4	257
360	Two-dimensional-related catalytic materials for solar-driven conversion of CO into valuable chemical feedstocks. <i>Chemical Society Reviews</i> , 2019 , 48, 1972-2010	58.5	233
359	Reactivity and mechanistic insight into visible-light-induced aerobic cross-dehydrogenative coupling reaction by organophotocatalysts. <i>Chemistry - A European Journal</i> , 2012 , 18, 620-7	4.8	232
358	Photocatalytic hydrogen production from hantzsch 1,4-dihydropyridines by platinum(II) terpyridyl complexes in homogeneous solution. <i>Journal of the American Chemical Society</i> , 2004 , 126, 3440-1	16.4	213
357	A cascade cross-coupling hydrogen evolution reaction by visible light catalysis. <i>Journal of the American Chemical Society</i> , 2013 , 135, 19052-5	16.4	211
356	Semiconducting quantum dots for artificial photosynthesis. <i>Nature Reviews Chemistry</i> , 2018 , 2, 160-173	34.6	209
355	Alumina-Supported CoFe Alloy Catalysts Derived from Layered-Double-Hydroxide Nanosheets for Efficient Photothermal CO Hydrogenation to Hydrocarbons. <i>Advanced Materials</i> , 2018 , 30, 1704663	24	208
354	Dynamic covalent bond based on reversible photo [4 + 4] cycloaddition of anthracene for construction of double-dynamic polymers. <i>Organic Letters</i> , 2013 , 15, 6148-51	6.2	206
353	Enhancement of the efficiency of photocatalytic reduction of protons to hydrogen via molecular assembly. <i>Accounts of Chemical Research</i> , 2014 , 47, 2177-85	24.3	202
352	Photocatalytic Hydrogen-Evolution Cross-Couplings: Benzene C-H Amination and Hydroxylation. <i>Journal of the American Chemical Society</i> , 2016 , 138, 10080-3	16.4	198
351	CdS Nanoparticle-Decorated Cd Nanosheets for Efficient Visible Light-Driven Photocatalytic Hydrogen Evolution. <i>Advanced Energy Materials</i> , 2016 , 6, 1501241	21.8	193
350	Sub-3 nm Ultrafine Monolayer Layered Double Hydroxide Nanosheets for Electrochemical Water Oxidation. <i>Advanced Energy Materials</i> , 2018 , 8, 1703585	21.8	190
349	Eosin Y as a Direct Hydrogen-Atom Transfer Photocatalyst for the Functionalization of C-H Bonds. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 8514-8518	16.4	186
348	Supramolecular systems as microreactors: control of product selectivity in organic phototransformation. <i>Accounts of Chemical Research</i> , 2003 , 36, 39-47	24.3	183
347	Long-lived emission from platinum(II) terpyridyl acetylide complexes. <i>Inorganic Chemistry</i> , 2002 , 41, 565	35.5	182
346	From Solar Energy to Fuels: Recent Advances in Light-Driven C Chemistry. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 17528-17551	16.4	181

345	Semiconductor Quantum Dots: An Emerging Candidate for CO Photoreduction. <i>Advanced Materials</i> , 2019 , 31, e1900709	24	177
344	Photoresponsive hydrogen-bonded supramolecular polymers based on a stiff stilbene unit. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 9738-42	16.4	177
343	Visible-Light-Promoted Asymmetric Cross-Dehydrogenative Coupling of Tertiary Amines to Ketones by Synergistic Multiple Catalysis. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 3694-36	69 <mark>8^{6.4}</mark>	163
342	Recent advances in visible-light-driven organic reactions. <i>National Science Review</i> , 2017 , 4, 359-380	10.8	162
341	Pure Organic Room Temperature Phosphorescence from Excited Dimers in Self-Assembled Nanoparticles under Visible and Near-Infrared Irradiation in Water. <i>Journal of the American Chemical Society</i> , 2019 , 141, 5045-5050	16.4	161
340	Artificial Photosynthetic Systems Based on [FeFe]-Hydrogenase Mimics: the Road to High Efficiency for Light-Driven Hydrogen Evolution. <i>ACS Catalysis</i> , 2012 , 2, 407-416	13.1	160
339	Mechanistic insights into the interface-directed transformation of thiols into disulfides and molecular hydrogen by visible-light irradiation of quantum dots. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 2085-9	16.4	159
338	Oxide-Modified Nickel Photocatalysts for the Production of Hydrocarbons in Visible Light. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 4215-9	16.4	157
337	Template-free large-scale synthesis of g-C3N4 microtubes for enhanced visible light-driven photocatalytic H2 production. <i>Nano Research</i> , 2018 , 11, 3462-3468	10	149
336	Facile synthesis of hierarchical ZnIn2S4 submicrospheres composed of ultrathin mesoporous nanosheets as a highly efficient visible-light-driven photocatalyst for H2 production. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 4552	13	149
335	Chitosan confinement enhances hydrogen photogeneration from a mimic of the diiron subsite of [FeFe]-hydrogenase. <i>Nature Communications</i> , 2013 , 4, 2695	17.4	144
334	Highly luminescent nitrogen-doped carbon quantum dots as effective fluorescent probes for mercuric and iodide ions. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 1922-1928	7.1	144
333	Direct Synthesis of Graphdiyne Nanowalls on Arbitrary Substrates and Its Application for Photoelectrochemical Water Splitting Cell. <i>Advanced Materials</i> , 2017 , 29, 1605308	24	140
332	Highly efficient and selective photocatalytic hydrogenation of functionalized nitrobenzenes. <i>Green Chemistry</i> , 2014 , 16, 1082-1086	10	140
331	Photocatalytic Hydrogen Production from Water by Noble-Metal-Free Molecular Catalyst Systems Containing Rose Bengal and the Cobaloximes of BFx-Bridged Oxime Ligands. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 15868-15874	3.8	139
330	Cross-coupling hydrogen evolution reaction in homogeneous solution without noble metals. <i>Organic Letters</i> , 2014 , 16, 1988-91	6.2	132
329	Exceptional poly(acrylic acid)-based artificial [FeFe]-hydrogenases for photocatalytic H2 production in water. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 8134-8	16.4	132
328	Effect of Nitrogen Doping Level on the Performance of N-Doped Carbon Quantum Dot/TiO Composites for Photocatalytic Hydrogen Evolution. <i>ChemSusChem</i> , 2017 , 10, 4650-4656	8.3	127

327	Photocatalytic Activation of Less Reactive Bonds and Their Functionalization via Hydrogen-Evolution Cross-Couplings. <i>Accounts of Chemical Research</i> , 2018 , 51, 2512-2523	24.3	127
326	Visible Light Catalysis Assisted Site-Specific Functionalization of Amino Acid Derivatives by CH Bond Activation without Oxidant: Cross-Coupling Hydrogen Evolution Reaction. <i>ACS Catalysis</i> , 2015 , 5, 2391-2396	13.1	126
325	A highly efficient and selective aerobic cross-dehydrogenative-coupling reaction photocatalyzed by a platinum(II) terpyridyl complex. <i>Chemistry - A European Journal</i> , 2013 , 19, 6443-50	4.8	126
324	A luminescent chemosensor with specific response for Mg2+. <i>Inorganic Chemistry</i> , 2004 , 43, 5195-7	5.1	122
323	Self-Assembled Framework Enhances Electronic Communication of Ultrasmall-Sized Nanoparticles for Exceptional Solar Hydrogen Evolution. <i>Journal of the American Chemical Society</i> , 2017 , 139, 4789-47	9 ^{£6.4}	121
322	Photooxidation of olefins under oxygen in platinum(II) complex-loaded mesoporous molecular sieves. <i>Journal of the American Chemical Society</i> , 2006 , 128, 14685-90	16.4	121
321	Graphene-Supported Ultrafine Metal Nanoparticles Encapsulated by Mesoporous Silica: Robust Catalysts for Oxidation and Reduction Reactions. <i>Angewandte Chemie</i> , 2014 , 126, 254-258	3.6	118
320	Efficient photocatalytic hydrogen evolution with ligand engineered all-inorganic InP and InP/ZnS colloidal quantum dots. <i>Nature Communications</i> , 2018 , 9, 4009	17.4	117
319	Face-to-Face Interfacial Assembly of Ultrathin g-CN and Anatase TiO Nanosheets for Enhanced Solar Photocatalytic Activity. <i>ACS Applied Materials & Description</i> , 19, 28674-28684	9.5	116
318	Graphdiyne: A Promising CatalystBupport To Stabilize Cobalt Nanoparticles for Oxygen Evolution. <i>ACS Catalysis</i> , 2017 , 7, 5209-5213	13.1	116
317	An exceptional artificial photocatalyst, Nih -CdSe/CdS core/shell hybrid, made in situ from CdSe quantum dots and nickel salts for efficient hydrogen evolution. <i>Advanced Materials</i> , 2013 , 25, 6613-8	24	116
316	Supramolecular precursor strategy for the synthesis of holey graphitic carbon nitride nanotubes with enhanced photocatalytic hydrogen evolution performance. <i>Nano Research</i> , 2019 , 12, 2385-2389	10	115
315	Artificial light-harvesting system based on multifunctional surface-cross-linked micelles. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 2088-92	16.4	115
314	Light-Harvesting Systems Based on Organic Nanocrystals To Mimic Chlorosomes. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 2759-63	16.4	115
313	A robust Brtificial catalystlln situ formed from CdTe QDs and inorganic cobalt salts for photocatalytic hydrogen evolution. <i>Energy and Environmental Science</i> , 2013 , 6, 465-469	35.4	111
312	Photocatalytic hydrogen evolution from rhenium(I) complexes to [FeFe] hydrogenase mimics in aqueous SDS micellar systems: a biomimetic pathway. <i>Langmuir</i> , 2010 , 26, 9766-71	4	111
311	Photocatalysis with Quantum Dots and Visible Light: Selective and Efficient Oxidation of Alcohols to Carbonyl Compounds through a Radical Relay Process in Water. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 3020-3024	16.4	110
310	Cobalt-catalyzed cross-dehydrogenative coupling reaction in water by visible light. <i>Organic Letters</i> , 2015 , 17, 884-7	6.2	110

309	Interface-directed assembly of a simple precursor of [FeFe]#2ase mimics on CdSe QDs for photosynthetic hydrogen evolution in water. <i>Energy and Environmental Science</i> , 2013 , 6, 2597	35.4	108
308	Spontaneous organization of inorganic nanoparticles into nanovesicles triggered by UV light. Advanced Materials, 2014, 26, 5613-8	24	104
307	Efficient and Selective CO2 Reduction Integrated with Organic Synthesis by Solar Energy. <i>CheM</i> , 2019 , 5, 2605-2616	16.2	102
306	Visible-light induced oxidant-free oxidative cross-coupling for constructing allylic sulfones from olefins and sulfinic acids. <i>Chemical Communications</i> , 2016 , 52, 10407-10	5.8	100
305	Visible-light-driven difluoroacetamidation of unactive arenes and heteroarenes by direct C-H functionalization at room temperature. <i>Organic Letters</i> , 2014 , 16, 5842-5	6.2	100
304	Ni3+ doped monolayer layered double hydroxide nanosheets as efficient electrodes for supercapacitors. <i>Nanoscale</i> , 2015 , 7, 7168-73	7.7	98
303	Switching between ligand-to-ligand charge-transfer, intraligand charge-transfer, and metal-to-ligand charge-transfer excited states in platinum(II) terpyridyl acetylide complexes induced by pH change and metal ions. <i>Chemistry - A European Journal</i> , 2007 , 13, 1231-9	4.8	97
302	Co-Based Catalysts Derived from Layered-Double-Hydroxide Nanosheets for the Photothermal Production of Light Olefins. <i>Advanced Materials</i> , 2018 , 30, e1800527	24	92
301	Water-dispersible nanospheres of hydrogen-bonded supramolecular polymers and their application for mimicking light-harvesting systems. <i>Chemical Communications</i> , 2014 , 50, 1334-7	5.8	92
300	A near-infrared fluorescent sensor for selective detection of cysteine and its application in live cell imaging. <i>RSC Advances</i> , 2014 , 4, 8360	3.7	90
299	Visible-light-mediated aerobic selenation of (hetero)arenes with diselenides. <i>Green Chemistry</i> , 2017 , 19, 5559-5563	10	86
298	General and Efficient Intermolecular [2+2] Photodimerization of Chalcones and Cinnamic Acid Derivatives in Solution through Visible-Light Catalysis. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 15407-15410	16.4	84
297	A novel intermolecular synthesis of Elactones via visible-light photoredox catalysis. <i>Organic Letters</i> , 2013 , 15, 6054-7	6.2	84
296	Photoresponsive supramolecular self-assembly of monofunctionalized pillar[5]arene based on stiff stilbene. <i>Chemical Communications</i> , 2014 , 50, 7001-3	5.8	83
295	Controllable Synthesis of Ultrathin Transition-Metal Hydroxide Nanosheets and their Extended Composite Nanostructures for Enhanced Catalytic Activity in the Heck Reaction. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 2167-70	16.4	83
294	Efficient Photocatalytic Nitrogen Fixation over Cu⊞-Modified Defective ZnAl-Layered Double Hydroxide Nanosheets. <i>Advanced Energy Materials</i> , 2020 , 10, 1901973	21.8	82
293	Three-Dimensional Graphene Networks with Abundant Sharp Edge Sites for Efficient Electrocatalytic Hydrogen Evolution. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 192-197	16.4	82
292	An Oxidant-Free Strategy for Indole Synthesis via Intramolecular CII Bond Construction under Visible Light Irradiation: Cross-Coupling Hydrogen Evolution Reaction. <i>ACS Catalysis</i> , 2016 , 6, 4635-4639) ^{13.1}	81

(2014-2015)

291	Activation of C?H Bonds through Oxidant-Free Photoredox Catalysis: Cross-Coupling Hydrogen-Evolution Transformation of Isochromans and EKeto Esters. <i>Chemistry - A European Journal</i> , 2015 , 21, 18080-4	4.8	80
290	Supramolecular Polymeric Fluorescent Nanoparticles Based on Quadruple Hydrogen Bonds. <i>Advanced Functional Materials</i> , 2016 , 26, 5483-5489	15.6	79
289	Rational design of isostructural 2D porphyrin-based covalent organic frameworks for tunable photocatalytic hydrogen evolution. <i>Nature Communications</i> , 2021 , 12, 1354	17.4	78
288	A solution-processed, mercaptoacetic acid-engineered CdSe quantum dot photocathode for efficient hydrogen production under visible light irradiation. <i>Energy and Environmental Science</i> , 2015 , 8, 1443-1449	35.4	76
287	Photocatalytic hydrogen evolution from glycerol and water over nickel-hybrid cadmium sulfide quantum dots under visible-light irradiation. <i>ChemSusChem</i> , 2014 , 7, 1468-75	8.3	76
286	Combining Visible Light Catalysis and Transition Metal Catalysis for the Alkylation of Secondary Amines. <i>Advanced Synthesis and Catalysis</i> , 2013 , 355, 2158-2164	5.6	74
285	Simple bipolar host materials incorporating CN group for highly efficient blue electrophosphorescence with slow efficiency roll-off. <i>Journal of Materials Chemistry C</i> , 2013 , 1, 8140	7.1	74
284	Improved Photoelectrocatalytic Performance for Water Oxidation by Earth-Abundant Cobalt Molecular Porphyrin Complex-Integrated BiVO4 Photoanode. <i>ACS Applied Materials & Materials & Interfaces</i> , 2016 , 8, 18577-83	9.5	72
283	Naked Magnetically Recyclable Mesoporous Au Fe2O3 Nanocrystal Clusters: A Highly Integrated Catalyst System. <i>Advanced Functional Materials</i> , 2017 , 27, 1606215	15.6	71
282	Reductive Transformation of Layered-Double-Hydroxide Nanosheets to Fe-Based Heterostructures for Efficient Visible-Light Photocatalytic Hydrogenation of CO. <i>Advanced Materials</i> , 2018 , 30, e1803127	24	70
281	A Highly Efficient Photocatalytic System for Hydrogen Production by a Robust Hydrogenase Mimic in an Aqueous Solution. <i>Angewandte Chemie</i> , 2011 , 123, 3251-3255	3.6	70
280	Artificial light-harvesting supramolecular polymeric nanoparticles formed by pillar[5]arene-based host-guest interaction. <i>Chemical Communications</i> , 2018 , 54, 1117-1120	5.8	69
279	Synthesis of Oligoparaphenylene-Derived Nanohoops Employing an Anthracene Photodimerization-Cycloreversion Strategy. <i>Journal of the American Chemical Society</i> , 2016 , 138, 11144-	.1 6.4	69
278	Metallic Co2C: A Promising Co-catalyst To Boost Photocatalytic Hydrogen Evolution of Colloidal Quantum Dots. <i>ACS Catalysis</i> , 2018 , 8, 5890-5895	13.1	69
277	Superhydrophilic Graphdiyne Accelerates Interfacial Mass/Electron Transportation to Boost Electrocatalytic and Photoelectrocatalytic Water Oxidation Activity. <i>Advanced Functional Materials</i> , 2019 , 29, 1808079	15.6	68
276	Graphene quantum dots to enhance the photocatalytic hydrogen evolution efficiency of anatase TiO2 with exposed {001} facet. <i>Physical Chemistry Chemical Physics</i> , 2016 , 18, 20338-44	3.6	68
275	Photocatalytic hydrogen evolution by [FeFe] hydrogenase mimics in homogeneous solution. <i>Chemistry - an Asian Journal</i> , 2010 , 5, 1796-803	4.5	67
274	Visible light catalysis-assisted assembly of Ni(h)-QD hollow nanospheres in situ via hydrogen bubbles. <i>Journal of the American Chemical Society</i> , 2014 , 136, 8261-8	16.4	65

273	Graphdiyne for crucial gas involved catalytic reactions in energy conversion applications. <i>Energy and Environmental Science</i> , 2020 , 13, 1326-1346	35.4	65
272	Quantum Dot Assembly for Light-Driven Multielectron Redox Reactions, such as Hydrogen Evolution and CO Reduction. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 10804-10811	16.4	64
271	Direct synthesis of all-inorganic heterostructured CdSe/CdS QDs in aqueous solution for improved photocatalytic hydrogen generation. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 10365-10373	13	63
270	Reverse saturable absorption of platinum ter/bipyridyl polyphenylacetylide complexes. <i>Applied Physics Letters</i> , 2003 , 82, 850-852	3.4	63
269	Eosin Y as a Direct Hydrogen-Atom Transfer Photocatalyst for the Functionalization of Cℍ Bonds. <i>Angewandte Chemie</i> , 2018 , 130, 8650-8654	3.6	62
268	Shape-controlled synthesis of polyhedral 50-facet Cu2O microcrystals with high-index facets. <i>CrystEngComm</i> , 2012 , 14, 4431	3.3	62
267	BODIPY-based fluorescent probe for the simultaneous detection of glutathione and cysteine/homocysteine at different excitation wavelengths. <i>RSC Advances</i> , 2015 , 5, 3959-3964	3.7	61
266	Exploring the Reducing Ability of Organic Dye (Acr-Mes) for Fluorination and Oxidation of Benzylic C(sp)-H Bonds under Visible Light Irradiation. <i>Organic Letters</i> , 2017 , 19, 3009-3012	6.2	60
265	A Hydrogen-Bonded-Supramolecular-Polymer-Based Nanoprobe for Ratiometric Oxygen Sensing in Living Cells. <i>Advanced Functional Materials</i> , 2016 , 26, 5419-5425	15.6	60
264	Switch of the Lowest Excited-States of Terpyridylplatinum(II) Acetylide Complexes Bearing Amino or Azacrown Moieties by Proton and Cations. <i>European Journal of Inorganic Chemistry</i> , 2004 , 2004, 1948	3-1954	58
263	BowtieArene: A Dual Macrocycle Exhibiting Stimuli-Responsive Fluorescence. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 10059-10065	16.4	57
262	A Bio-inspired Cu O Cubane: Effective Molecular Catalysts for Electrocatalytic Water Oxidation in Aqueous Solution. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 7850-7854	16.4	55
261	Reversible multistimuli-responsive vesicles formed by an amphiphilic cationic platinum(II) terpyridyl complex with a ferrocene unit in water. <i>Chemical Communications</i> , 2012 , 48, 10886-8	5.8	54
260	Efficient Triplet Sensitizers of Palladium(II) Tetraphenylporphyrins for Upconversion-Powered Photoelectrochemistry. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 1417-1425	3.8	53
259	Semiconductor nanocrystals for small molecule activation via artificial photosynthesis. <i>Chemical Society Reviews</i> , 2020 , 49, 9028-9056	58.5	53
258	Metal-Free Desulfonylation Reaction Through Visible-Light Photoredox Catalysis. <i>European Journal of Organic Chemistry</i> , 2013 , 2013, 7528-7532	3.2	52
257	Highly efficient cucurbit[8]uril-templated intramolecular photocycloaddition of 2-naphthalene-labeled poly(ethylene glycol) in aqueous solution. <i>Journal of Organic Chemistry</i> , 2008 , 73, 491-4	4.2	52
256	Photocatalysis with Quantum Dots and Visible Light for Effective Organic Synthesis. <i>Chemistry - A European Journal</i> , 2018 , 24, 11530-11534	4.8	51

(2016-2014)

255	Synthesis of 2-substituted pyrimidines and benzoxazoles via a visible-light-driven organocatalytic aerobic oxidation: enhancement of the reaction rate and selectivity by a base. <i>Green Chemistry</i> , 2014 , 16, 3752	10	51
254	Visible Light Initiated Hantzsch Synthesis of 2,5-Diaryl-Substituted Pyrroles at Ambient Conditions. <i>Organic Letters</i> , 2016 , 18, 2479-82	6.2	51
253	An isolable catenane consisting of two MBius conjugated nanohoops. <i>Nature Communications</i> , 2018 , 9, 3037	17.4	50
252	A triad [FeFe] hydrogenase system for light-driven hydrogen evolution. <i>Chemical Communications</i> , 2011 , 47, 8406-8	5.8	50
251	Comparison of H2 photogeneration by [FeFe]-hydrogenase mimics with CdSe QDs and Ru(bpy)3Cl2 in aqueous solution. <i>Energy and Environmental Science</i> , 2016 , 9, 2083-2089	35.4	50
250	Recent Advances in Sensitized Photocathodes: From Molecular Dyes to Semiconducting Quantum Dots. <i>Advanced Science</i> , 2018 , 5, 1700684	13.6	49
249	FeOtteO2 nanocomposites: an efficient and highly selective catalyst system for photothermal CO2 reduction to CO. NPG Asia Materials, 2020, 12,	10.3	48
248	Silica-Protected Ultrathin Ni3FeN Nanocatalyst for the Efficient Hydrolytic Dehydrogenation of NH3BH3. <i>Advanced Energy Materials</i> , 2018 , 8, 1702780	21.8	48
247	Oxidative Cyclization Synthesis of Tetrahydroquinolines and Reductive Hydrogenation of Maleimides under Redox-Neutral Conditions. <i>Organic Letters</i> , 2018 , 20, 2916-2920	6.2	48
246	Cobaloxime Catalysis: Selective Synthesis of Alkenylphosphine Oxides under Visible Light. <i>Journal of the American Chemical Society</i> , 2019 , 141, 13941-13947	16.4	48
245	Branched polyethylenimine improves hydrogen photoproduction from a CdSe quantum dot/[FeFe]-hydrogenase mimic system in neutral aqueous solutions. <i>Chemistry - A European Journal</i> , 2015 , 21, 3187-92	4.8	48
244	Visible-Light Photocatalysis Employing Dye-Sensitized Semiconductor: Selective Aerobic Oxidation of Benzyl Ethers. <i>ACS Catalysis</i> , 2017 , 7, 8134-8138	13.1	47
243	Synthesis of a photoresponsive cryptand and its complexations with paraquat and 2,7-diazapyrenium. <i>Organic Letters</i> , 2014 , 16, 684-7	6.2	46
242	Benzene C-H Etherification via Photocatalytic Hydrogen-Evolution Cross-Coupling Reaction. <i>Organic Letters</i> , 2017 , 19, 2206-2209	6.2	44
241	A Cascade Cross-Coupling and in Situ Hydrogenation Reaction by Visible Light Catalysis. <i>Advanced Synthesis and Catalysis</i> , 2014 , 356, 2846-2852	5.6	44
240	Hole-Accepting-Ligand-Modified CdSe QDs for Dramatic Enhancement of Photocatalytic and Photoelectrochemical Hydrogen Evolution by Solar Energy. <i>Advanced Science</i> , 2016 , 3, 1500282	13.6	44
239	Zeolites as Templates for Preparation of Large-Ring Compounds: Intramolecular Photocycloaddition of Diaryl Compounds. <i>Journal of the American Chemical Society</i> , 1998 , 120, 11594-11	1 6 6 2	43
238	Radical Addition of Hydrazones by Bromo Ketones To Prepare 1,3,5-Trisubstituted Pyrazoles via Visible Light Catalysis. <i>Journal of Organic Chemistry</i> , 2016 , 81, 7127-33	4.2	42

237	Cucurbit[8]uril-mediated photodimerization of alkyl 2-naphthoate in aqueous solution. <i>Tetrahedron Letters</i> , 2008 , 49, 1502-1505	2	42
236	Synthesis and Characterization of a Pentiptycene-Derived Dual Oligoparaphenylene Nanohoop. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 3943-3947	16.4	42
235	Pure Organic Room Temperature Phosphorescence from Unique Micelle-Assisted Assembly of Nanocrystals in Water. <i>Advanced Functional Materials</i> , 2020 , 30, 1907282	15.6	41
234	Aerobic oxidative coupling of resveratrol and its analogues by visible light using mesoporous graphitic carbon nitride (mpg-C(3)N(4)) as a bioinspired catalyst. <i>Chemistry - A European Journal</i> , 2014 , 20, 678-82	4.8	41
233	Visible Light Promoted Synthesis of Indoles by Single Photosensitizer under Aerobic Conditions. Organic Letters, 2017 , 19, 3251-3254	6.2	40
232	Visible-Light-Driven Synthesis of 4-Alkyl/Aryl-2-Aminothiazoles Promoted by In Situ Generated Copper Photocatalyst. <i>ACS Catalysis</i> , 2017 , 7, 7941-7945	13.1	40
231	Preparation of Heterocycles via Visible-Light-Driven Aerobic Selenation of Olefins with Diselenides. <i>Organic Letters</i> , 2019 , 21, 885-889	6.2	40
230	Reversible Light-Triggered Transition of Amphiphilic Random Copolymers. <i>Macromolecules</i> , 2012 , 45, 5596-5603	5.5	40
229	Amphiphilic polymeric micelles as microreactors: improving the photocatalytic hydrogen production of the [FeFe]-hydrogenase mimic in water. <i>Chemical Communications</i> , 2016 , 52, 457-60	5.8	39
228	Photocatalytic C-C Bond Activation of Oxime Ester for Acyl Radical Generation and Application. <i>Organic Letters</i> , 2019 , 21, 4153-4158	6.2	39
227	Exceptional Catalytic Nature of Quantum Dots for Photocatalytic Hydrogen Evolution without External Cocatalysts. <i>Advanced Functional Materials</i> , 2018 , 28, 1801769	15.6	39
226	Evolution of thiolate-stabilized Ag nanoclusters from Ag-thiolate cluster intermediates. <i>Nature Communications</i> , 2018 , 9, 2379	17.4	39
225	Visible-light-promoted aerobic metal-free aminothiocyanation of activated ketones. <i>Green Chemistry</i> , 2018 , 20, 5464-5468	10	39
224	Dinuclear cyclometallated platinum(II) complex as a sensitive luminescent probe for SDS micelles. <i>Chemical Communications</i> , 1998 , 1127-1128	5.8	38
223	pH-Responsive reversible self-assembly of gold nanoparticles into nanovesicles. <i>Nanoscale</i> , 2016 , 8, 392	23-5	37
222	Carbon Nanosheets: Nitrogen-Doped Porous Carbon Nanosheets Templated from g-C3 N4 as Metal-Free Electrocatalysts for Efficient Oxygen Reduction Reaction (Adv. Mater. 25/2016). <i>Advanced Materials</i> , 2016 , 28, 5140	24	36
221	Assembling metallic 1T-MoS nanosheets with inorganic-ligand stabilized quantum dots for exceptional solar hydrogen evolution. <i>Chemical Communications</i> , 2017 , 53, 5606-5609	5.8	35
220	Vectorial electron transfer for improved hydrogen evolution by mercaptopropionic-acid-regulated CdSe quantum-dots-TiO2 -Ni(OH)2 assembly. <i>ChemSusChem</i> , 2015 , 8, 642-9	8.3	35

219	Surface stoichiometry manipulation enhances solar hydrogen evolution of CdSe quantum dots. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 6015-6021	13	35
218	Visible-Light-Driven Intermolecular [2+2] Cycloadditions between Coumarin-3-Carboxylates and Acrylamide Analogs. <i>Chemistry - A European Journal</i> , 2015 , 21, 10326-9	4.8	35
217	Mechanistic Insights into the Interface-Directed Transformation of Thiols into Disulfides and Molecular Hydrogen by Visible-Light Irradiation of Quantum Dots. <i>Angewandte Chemie</i> , 2014 , 126, 2117	-2121	35
216	Protonated Graphitic Carbon Nitride with Surface Attached Molecule as Hole Relay for Efficient Photocatalytic O2 Evolution. <i>ACS Catalysis</i> , 2016 , 6, 8336-8341	13.1	34
215	Gamma-cyclodextrin-directed enantioselective photocyclodimerization of methyl 3-methoxyl-2-naphthoate. <i>Journal of Organic Chemistry</i> , 2009 , 74, 3506-15	4.2	34
214	Tracking Co(I) Intermediate in Operando in Photocatalytic Hydrogen Evolution by X-ray Transient Absorption Spectroscopy and DFT Calculation. <i>Journal of Physical Chemistry Letters</i> , 2016 , 7, 5253-5258	6.4	34
213	A Redox Shuttle Accelerates O Evolution of Photocatalysts Formed In Situ under Visible Light. <i>Advanced Materials</i> , 2017 , 29, 1606009	24	33
212	Thiolate-Mediated Photoinduced Synthesis of Ultrafine Ag S Quantum Dots from Silver Nanoparticles. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 14952-14957	16.4	33
211	Long-Lived Photoinduced Charge Separation in Ru(Bpy)32+/Viologen System at Nafion MembraneBolution Interface. <i>Journal of Physical Chemistry B</i> , 2000 , 104, 9468-9474	3.4	33
2 10	A light-driven molecular machine based on stiff stilbene. <i>Chemical Communications</i> , 2018 , 54, 7991-7994	1 5.8	33
209	Recent Advances in the Synthesis, Characterization and Application of Zn-containing Heterogeneous Catalysts. <i>Advanced Science</i> , 2016 , 3, 1500424	13.6	32
208	Reactivity and mechanistic insight into the cross coupling reaction between isochromans and Eketo esters through CH bond activation under visible light irradiation. <i>Organic Chemistry Frontiers</i> , 2016 , 3, 486-490	5.2	32
207	Susceptible Surface Sulfide Regulates Catalytic Activity of CdSe Quantum Dots for Hydrogen Photogeneration. <i>Advanced Materials</i> , 2019 , 31, e1804872	24	32
206	Facile formation of CoN4 active sites onto a SiO2 support to achieve robust CO2 and proton reduction in a noble-metal-free photocatalytic system. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 10475-	1 ¹ 0 ³ 482	31
205	Regioselective Amination of an Aromatic C-H Bond by Trifluoroacetic Acid via Electrochemistry. <i>Organic Letters</i> , 2019 , 21, 5581-5585	6.2	31
204	Artificial Light-Harvesting System Based on Multifunctional Surface-Cross-Linked Micelles. <i>Angewandte Chemie</i> , 2012 , 124, 2130-2134	3.6	31
203	Exceptional Poly(acrylic acid)-Based Artificial [FeFe]-Hydrogenases for Photocatalytic H2 Production in Water. <i>Angewandte Chemie</i> , 2013 , 125, 8292-8296	3.6	31
202	Three-Dimensional Graphene Networks with Abundant Sharp Edge Sites for Efficient Electrocatalytic Hydrogen Evolution. <i>Angewandte Chemie</i> , 2018 , 130, 198-203	3.6	30

201	Combining visible light catalysis and transfer hydrogenation for in situ efficient and selective semihydrogenation of alkynes under ambient conditions. <i>Chemical Communications</i> , 2016 , 52, 1800-3	5.8	30
200	Nonstoichiometric Cu In S Quantum Dots for Efficient Photocatalytic Hydrogen Evolution. <i>ChemSusChem</i> , 2017 , 10, 4833-4838	8.3	30
199	Photoresponsive Hydrogen-Bonded Supramolecular Polymers Based on a Stiff Stilbene Unit. <i>Angewandte Chemie</i> , 2013 , 125, 9920-9924	3.6	30
198	Synthesis and Unique Photoluminescence Properties of Nitrogen-Rich Quantum Dots and Their Applications. <i>Angewandte Chemie</i> , 2014 , 126, 12750-12755	3.6	29
197	Facile photoreduction of graphene oxide by an NAD(P)H model: Hantzsch 1,4-dihydropyridine. <i>Langmuir</i> , 2012 , 28, 8224-9	4	29
196	Photochemical preparation of pyrimidin-2(1H)-ones by rhenium(I) complexes with visible light. <i>Journal of Organic Chemistry</i> , 2011 , 76, 1444-7	4.2	29
195	Metal-Free, Redox-Neutral, Site-Selective Access to Heteroarylamine via Direct Radical-Radical Cross-Coupling Powered by Visible Light Photocatalysis. <i>Journal of the American Chemical Society</i> , 2020 , 142, 16805-16813	16.4	29
194	Preparation of Acyloxy Ketones via Visible-Light-Driven Aerobic Oxo-Acyloxylation of Olefins with Carboxylic Acids. <i>Organic Letters</i> , 2016 , 18, 5256-5259	6.2	29
193	ZnCl2 Enabled Synthesis of Highly Crystalline and Emissive Carbon Dots with Exceptional Capability to Generate O2?[] <i>Matter</i> , 2020 , 2, 495-506	12.7	28
192	Oxide-Modified Nickel Photocatalysts for the Production of Hydrocarbons in Visible Light. <i>Angewandte Chemie</i> , 2016 , 128, 4287-4291	3.6	28
191	Luminescent supramolecular polymer nanoparticles for ratiometric hypoxia sensing, imaging and therapy. <i>Materials Chemistry Frontiers</i> , 2018 , 2, 1893-1899	7.8	28
190	Identifying key intermediates generated in situ from Cu(II) salt-catalyzed C-H functionalization of aromatic amines under illumination. <i>Science Advances</i> , 2017 , 3, e1700666	14.3	28
189	A Sustainable Strategy for the Synthesis of Pyrochlore H Nb O Hollow Microspheres as Photocatalysts for Overall Water Splitting. <i>ChemPlusChem</i> , 2017 , 82, 181-185	2.8	28
188	Enhanced visible-light-driven hydrogen generation by in situ formed photocatalyst RGOIdSNixS from metal salts and RGOIdS composites. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 9537-9543	13	27
187	Unveiling Catalytic Sites in a Typical Hydrogen Photogeneration System Consisting of Semiconductor Quantum Dots and 3d-Metal Ions. <i>Journal of the American Chemical Society</i> , 2020 , 142, 4680-4689	16.4	27
186	Enhanced Charge Separation Efficiency Accelerates Hydrogen Evolution from Water of Carbon Nitride and 3,4,9,10-Perylene-tetracarboxylic Dianhydride Composite Photocatalyst. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 3515-3521	9.5	27
185	Visible-Light-Driven Photocatalytic Activation of Inert Sulfur Ylides for 3-Acyl Oxindole Synthesis. <i>Chemistry - A European Journal</i> , 2016 , 22, 8432-7	4.8	27
184	Synthesis of a disulfide-bridged bispillar[5]arene and its application in supramolecular polymers. <i>Polymer Chemistry</i> , 2016 , 7, 2057-2061	4.9	27

(2010-2020)

183	Monochromophore-Based Phosphorescence and Fluorescence from Pure Organic Assemblies for Ratiometric Hypoxia Detection. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 23456-23460	16.4	26
182	Photoinduced triplet-triplet energy transfer in a 2-ureido-4(1H)-pyrimidinone-bridged, quadruply hydrogen-bonded ferrocene-fullerene assembly. <i>ChemPhysChem</i> , 2013 , 14, 198-203	3.2	25
181	Photoreduction: Defect-Rich Ultrathin ZnAl-Layered Double Hydroxide Nanosheets for Efficient Photoreduction of CO2 to CO with Water (Adv. Mater. 47/2015). <i>Advanced Materials</i> , 2015 , 27, 7823-78	2 3 4	25
180	Visible light-catalytic dehydrogenation of benzylic alcohols to carbonyl compounds by using an eosin Y and nickel E hiolate complex dual catalyst system. <i>Green Chemistry</i> , 2019 , 21, 1401-1405	10	25
179	General and Efficient Intermolecular [2+2] Photodimerization of Chalcones and Cinnamic Acid Derivatives in Solution through Visible-Light Catalysis. <i>Angewandte Chemie</i> , 2017 , 129, 15609-15612	3.6	24
178	A Photochemical Route towards Metal Sulfide Nanosheets from Layered Metal Thiolate Complexes. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 8443-8447	16.4	24
177	Visible Light-Catalyzed Benzylic C-H Bond Chlorination by a Combination of Organic Dye (Acr-Mes) and -Chlorosuccinimide. <i>Journal of Organic Chemistry</i> , 2020 , 85, 9080-9087	4.2	24
176	Secondary coordination sphere accelerates hole transfer for enhanced hydrogen photogeneration from [FeFe]-hydrogenase mimic and CdSe QDs in water. <i>Scientific Reports</i> , 2016 , 6, 29851	4.9	24
175	Direct Arylation of Unactivated Alkanes with Heteroarenes by Visible-Light Catalysis. <i>Journal of Organic Chemistry</i> , 2019 , 84, 12904-12912	4.2	24
174	Synthesis and photophysical studies of calix[4]arene-based binuclear platinum(II) complexes: probing metal-metal and ligand-ligand interactions. <i>Inorganic Chemistry</i> , 2008 , 47, 5099-106	5.1	24
173	Photoresponsive AA/BB supramolecular polymers comprising stiff-stilbene based guests and bispillar[5]arenes. <i>Polymer Chemistry</i> , 2017 , 8, 3596-3602	4.9	23
172	Photoinduced hydroxylperfluoroalkylation of styrenes. <i>Organic Chemistry Frontiers</i> , 2018 , 5, 1045-1048	5.2	23
171	Microreactor-controlled selectivity in organic photochemical reactions. <i>Pure and Applied Chemistry</i> , 2000 , 72, 2289-2298	2.1	23
170	Visible Light Induced Cross-Coupling Hydrogen Evolution Reactions. <i>Acta Chimica Sinica</i> , 2017 , 75, 34	3.3	23
169	A Phosphorescent Platinum(II) Bipyridyl Supramolecular Polymer Based on Quadruple Hydrogen Bonds. <i>Chemistry - A European Journal</i> , 2016 , 22, 18132-18139	4.8	22
168	Photoinduced synthesis of fluorinated dibenz[b,e]azepines via radical triggered cyclization. <i>Chemical Communications</i> , 2019 , 55, 10848-10851	5.8	22
167	Photoelectrochemical cell for P-H/C-H cross-coupling with hydrogen evolution. <i>Chemical Communications</i> , 2019 , 55, 10376-10379	5.8	22
166	Molecular logic circuit based on a multi-state mononuclear platinum(ii) terpyridyl complex. <i>Physical Chemistry Chemical Physics</i> , 2010 , 12, 13026-33	3.6	22

165	Efficient and selective photodimerization of 2-naphthalenecarbonitrile mediated by cucurbit[8]uril in an aqueous solution. <i>Photochemical and Photobiological Sciences</i> , 2011 , 10, 1441-4	4.2	22
164	Colorimetric sensors with different reactivity for the quantitative determination of cysteine, homocysteine and glutathione in a mixture. <i>RSC Advances</i> , 2015 , 5, 13042-13045	3.7	21
163	Direct synthesis of sulfide capped CdS and CdS/ZnS colloidal nanocrystals for efficient hydrogen evolution under visible light irradiation. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 16328-16332	13	21
162	One-Pot Hydrothermal Synthesis and Photocatalytic Hydrogen Evolution of Pyrochlore Type K2Nb2O6. <i>Chinese Journal of Chemistry</i> , 2014 , 32, 485-490	4.9	21
161	Highly sensitive and selective detection of beryllium ions using a microcantilever modified with benzo-9-crown-3 doped hydrogel. <i>Analyst, The,</i> 2012 , 137, 1220-4	5	21
160	Multifunctional applications of triazine/carbazole hybrid thermally activated delayed fluorescence emitters in organic light emitting diodes. <i>Journal of Materials Chemistry C</i> , 2019 , 7, 12470-12481	7:1	20
159	Von Sonnenlicht zu Brennstoffen: aktuelle Fortschritte der C1-Solarchemie. <i>Angewandte Chemie</i> , 2019 , 131, 17690-17715	3.6	20
158	Mesoporous Silica-Coated Gold Nanorods with Designable Anchor Peptides for Chemo-Photothermal Cancer Therapy. <i>ACS Applied Nano Materials</i> , 2020 , 3, 5070-5078	5.6	20
157	Site- and Spatial-Selective Integration of Non-noble Metal Ions into Quantum Dots for Robust Hydrogen Photogeneration. <i>Matter</i> , 2020 , 3, 571-585	12.7	20
156	Water-soluble sulfonatedgrapheneplatinum nanocomposites: facile photochemical preparation with enhanced catalytic activity for hydrogen photogeneration. <i>Catalysis Science and Technology</i> , 2013 , 3, 1815	5.5	20
155	Stepwise photochemical-chiral delivery in gamma-cyclodextrin-directed enantioselective photocyclodimerization of methyl 3-methoxyl-2-naphthoate in aqueous solution. <i>Langmuir</i> , 2010 , 26, 782-5	4	20
154	Photocatalysis with Quantum Dots and Visible Light: Selective and Efficient Oxidation of Alcohols to Carbonyl Compounds through a Radical Relay Process in Water. <i>Angewandte Chemie</i> , 2017 , 129, 306	6 <i>3</i> 3670	19
153	Visible-Light-Driven Selective Alkenyl C-P Bond Cleavage of Allenylphosphine Oxides. <i>Organic Letters</i> , 2019 , 21, 1994-1998	6.2	19
152	A multi-stimuli-responsive fluorescence switch based on EII isomerization of hydrazone. <i>RSC Advances</i> , 2016 , 6, 41002-41006	3.7	19
151	Photoredox Catalysis of Aromatic EKetoesters for in Situ Production of Transient and Persistent Radicals for Organic Transformation. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 5365-5370	16.4	18
150	Metal-Free-Mediated Oxidation Aromatization of 1,4-Dihydropyridines to Pyridines Using Visible Light and Air. <i>Chinese Journal of Chemistry</i> , 2014 , 32, 1245-1250	4.9	18
149	Photooxidation of Hantzsch 1,4-dihydropyridines by molecular oxygen. <i>Science Bulletin</i> , 2010 , 55, 2855	-2858	18
148	Cu(ii) coordination polymers with nitrogen catenation ligands for efficient photocatalytic water oxidation. <i>Chemical Communications</i> , 2018 , 54, 4794-4797	5.8	17

147	Nanocrystals@Hollow Mesoporous Silica Reverse-Bumpy-Ball Structure Nanoreactors by a Versatile Microemulsion-Templated Approach. <i>Small Methods</i> , 2018 , 2, 1800105	12.8	17	
146	Visible Light Irradiation of Acyl Oxime Esters and Styrenes Efficiently Constructs Ecarbonyl Imides by a Scission and Four-Component Reassembly Process. <i>Organic Letters</i> , 2019 , 21, 8789-8794	6.2	17	
145	Enhancement of diastereoselectivity in photodimerization of alkyl 2-naphthoates with chiral auxiliaries via inclusion within Eyclodextrin cavities. <i>Journal of Organic Chemistry</i> , 2012 , 77, 1685-92	4.2	17	
144	Facile preparation of 3,4-diarylpyrroles and hydrogen by a platinum(II) terpyridyl complex. <i>Inorganic Chemistry</i> , 2009 , 48, 9995-7	5.1	17	
143	Quantum dots enable direct alkylation and arylation of allylic C(sp3)⊞ bonds with hydrogen evolution by solar energy. <i>CheM</i> , 2021 , 7, 1244-1257	16.2	17	
142	Self-Assembled Amphiphilic Water Oxidation Catalysts: Control of O-O Bond Formation Pathways by Different Aggregation Patterns. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 6229-34	16.4	17	
141	Visible-light-enabled aerobic synthesis of benzoin bis-ethers from alkynes and alcohols. <i>Green Chemistry</i> , 2018 , 20, 5479-5483	10	17	
140	Tracking the Fe(O) intermediate and O-O bond formation of a nonheme iron catalyst for water oxidation. <i>Chemical Communications</i> , 2017 , 53, 9063-9066	5.8	16	
139	Two-photon-pumped frequency-upconverted lasing and optical power limiting properties of vinylbenzothiazole-containing compounds in solution. <i>Physical Chemistry Chemical Physics</i> , 2002 , 4, 5744	³ 5747	16	
138	Eosin Y- and Copper-Catalyzed Dark Reaction To Construct Ene-Lactams. <i>Organic Letters</i> , 2018 , 20, 7220-7224	6.2	16	
137	Multiple-State Emissions from Neat, Single-Component Molecular Solids: Suppression of Kasha's Rule. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 10173-10178	16.4	16	
136	Thiol Activation toward Selective Thiolation of Aromatic C-H Bond. <i>Organic Letters</i> , 2020 , 22, 3804-3809	6.2	15	
135	Homocoupling of 3-Halooxindole via Visible-Light Photocatalysis: A Mild Access to 3,3'-Bioxindoles. Journal of Organic Chemistry, 2016 , 81, 7172-81	4.2	15	
134	Visible light catalyzed aromatization of 1,3,5-triaryl-2-pyrazolines by platinum(II) polypyridyl complex under oxidant-free condition. <i>Science China Chemistry</i> , 2016 , 59, 175-179	7.9	15	
133	Visible light-induced photochemical oxygen evolution from water by 3,4,9,10-perylenetetracarboxylic dianhydride nanorods as an n-type organic semiconductor. <i>Catalysis Science and Technology</i> , 2016 , 6, 672-676	5.5	15	
132	Water-soluble copolymeric materials: switchable NIR two-photon fluorescence imaging agents for living cancer cells. <i>Journal of Materials Chemistry B</i> , 2014 , 2, 502-510	7.3	15	
131	CHIIINIII Interaction-Driven Homochiral M and P Helices of Neutral (R,R)- and (S,S)-Bis(pyrrol-2-ylmethyleneamino)cyclohexane NiII Complexes. <i>European Journal of Inorganic Chemistry</i> , 2007 , 2007, 3315-3319	2.3	15	
130	Domino Radical Addition/Oxidation Sequence with Photocatalysis: One-Pot Synthesis of Polysubstituted Furans from Echloro-Alkyl Ketones and Styrenes. <i>Chemistry - A European Journal</i> , 2016 , 22, 13794-13798	4.8	15	

129	Flower-like cobalt carbide for efficient carbon dioxide conversion. <i>Chemical Communications</i> , 2020 , 56, 7849-7852	5.8	14
128	Effect of electron transfer on the photocatalytic hydrogen evolution efficiency of faceted TiO2/CdSe QDs under visible light. <i>New Journal of Chemistry</i> , 2018 , 42, 4811-4817	3.6	14
127	Stiff-stilbene derivatives as new bright fluorophores with aggregation-induced emission. <i>Science China Chemistry</i> , 2019 , 62, 1194-1197	7.9	14
126	Enhancement of Intramolecular Photocycloaddition of Bichromophoric Compounds via Inclusion in Low-Density Polyethylene Films. <i>Journal of Organic Chemistry</i> , 1999 , 64, 5156-5161	4.2	14
125	Autoxidation/Aldol Tandem Reaction of 2-Oxindoles with Ketones: A Green Approach for the Synthesis of 3-Hydroxy-2-Oxindoles. <i>Chemistry - A European Journal</i> , 2016 , 22, 2595-8	4.8	14
124	BaAuS: A Au-Based Intrinsic Photocatalyst for High-Performance Visible-Light Photocatalysis. <i>Inorganic Chemistry</i> , 2017 , 56, 5173-5181	5.1	13
123	Superoxide Radical Anion-Mediated Aerobic Oxidative Synthesis of 2-Substituted Quinazolines under Visible Light. <i>Asian Journal of Organic Chemistry</i> , 2017 , 6, 449-452	3	13
122	Quantum Dot Assembly for Light-Driven Multielectron Redox Reactions, such as Hydrogen Evolution and CO2 Reduction. <i>Angewandte Chemie</i> , 2019 , 131, 10918-10925	3.6	13
121	Photocatalytic hydrogen-evolution dimerization of styrenes to synthesize 1,2-dihydro-1-arylnaphthalene derivatives using Acr + -Mes and cobaloxime catalysts. <i>Chinese Journal of Catalysis</i> , 2018 , 39, 1194-1201	11.3	13
120	A Bio-inspired Cu4O4 Cubane: Effective Molecular Catalysts for Electrocatalytic Water Oxidation in Aqueous Solution. <i>Angewandte Chemie</i> , 2018 , 130, 7976-7980	3.6	13
119	Direct Allylic C(sp)-H and Vinylic C(sp)-H Thiolation with Hydrogen Evolution by Quantum Dots and Visible Light. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 11779-11783	16.4	13
118	Integrating CdSe Quantum Dots with a [FeFe]-Hydrogenase Mimic into a Photocathode for Hydrogen Evolution at a Low Bias Voltage. <i>ChemPhotoChem</i> , 2017 , 1, 260-264	3.3	12
117	A Monophosphine Ligand Derived from Anthracene Photodimer: Synthetic Applications for Palladium-Catalyzed Coupling Reactions. <i>Organic Letters</i> , 2019 , 21, 8158-8163	6.2	12
116	Enhanced photocatalytic hydrogen evolution by combining water soluble graphene with cobalt salts. <i>Beilstein Journal of Nanotechnology</i> , 2014 , 5, 1167-74	3	12
115	Synthesis, structure, and chirality of hydroxyl- and carboxyl-functionalized cubane-like photodimers of 2-naphthalene. <i>Tetrahedron</i> , 2007 , 63, 3133-3137	2.4	12
114	Metallaphotoredox Dearomatization of Indoles by a Benzamide-Empowered [4 + 2] Annulation: Facile Access to Indolo[2,3-c]isoquinolin-5-ones. <i>ACS Catalysis</i> , 2021 , 11, 5054-5060	13.1	12
113	Photoredox/Cobalt-Catalyzed C(sp)-H Bond Functionalization toward Phenanthrene Skeletons with Hydrogen Evolution. <i>Organic Letters</i> , 2020 , 22, 9627-9632	6.2	11
112	Formation of cubane-like photodimers from 2-naphthalenecarbonitrile. <i>Journal of Organic Chemistry</i> , 2008 , 73, 7345-8	4.2	11

(2010-2006)

111	Stereochemistry of a cubane-like photodimer of methyl 2-naphthoate. <i>Tetrahedron Letters</i> , 2006 , 47, 4725-4727	2	11
110	Borylation of Diazonium Salts by Highly Emissive and Crystalline Carbon Dots in Water. <i>ChemSusChem</i> , 2020 , 13, 1715-1719	8.3	10
109	Modular Design of Poly(norbornenes) for Organelle-Specific Imaging in Tumor Cells. <i>Biomacromolecules</i> , 2016 , 17, 538-45	6.9	10
108	Tetrathiafulvalene derivatives bearing a crown ether with intramolecular charge transfer properties: synthesis and cation binding studies. <i>New Journal of Chemistry</i> , 2009 , 33, 813	3.6	10
107	Photoredox Oxo-C(sp)-H Bond Functionalization via in Situ Cu(I)-Acetylide Catalysis. <i>Organic Letters</i> , 2020 , 22, 832-836	6.2	10
106	Controllable Synthesis of Ultrathin Transition-Metal Hydroxide Nanosheets and their Extended Composite Nanostructures for Enhanced Catalytic Activity in the Heck Reaction. <i>Angewandte Chemie</i> , 2016 , 128, 2207-2210	3.6	10
105	Highly Efficient Iridium-Based Photosensitizers for Thia-Patern B @hi Reaction and Aza-Photocyclization. <i>ACS Catalysis</i> , 2021 , 11, 446-455	13.1	10
104	Revealing Ammonia Quantification Minefield in Photo/Electrocatalysis. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 21728-21731	16.4	10
103	Mechanistic studies on the atmosphere and light tuned synthesis of cyclobuta/penta[b]indoles. <i>Organic Chemistry Frontiers</i> , 2018 , 5, 1890-1895	5.2	9
102	Bidirectional Singlet and Triplet Energy Transfer via the 2-Ureido-4[1H]-pyrimidinone Quadruple Hydrogen-Bonded Module. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 16507-16515	3.8	9
101	Polymer-modified hydrophilic graphene: A promotor to photocatalytic hydrogen evolution for in situ formation of core@shell cobalt nanocomposites. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2016 , 331, 247-254	4.7	9
100	A sustainable synthesis of 2-aryl-3-carboxylate indolines from N-aryl enamines under visible light irradiation. <i>Chemical Communications</i> , 2017 , 53, 8320-8323	5.8	9
99	Amphiphilic Oxo-Bridged Ruthenium "Green Dimer" for Water Oxidation. <i>IScience</i> , 2020 , 23, 100969	6.1	8
98	Cobaloxime Catalysis for Enamine Phosphorylation with Hydrogen Evolution. <i>Organic Letters</i> , 2020 , 22, 5385-5389	6.2	8
97	Self-assembled inorganic clusters of semiconducting quantum dots for effective solar hydrogen evolution. <i>Chemical Communications</i> , 2018 , 54, 4858-4861	5.8	8
96	Luminescence-Tunable Polynorbornenes for Simultaneous Multicolor Imaging in Subcellular Organelles. <i>Biomacromolecules</i> , 2018 , 19, 2750-2758	6.9	8
95	Diastereodifferentiating photodimerization of alkyl 2-naphthoates with chiral auxiliaries. <i>Tetrahedron Letters</i> , 2009 , 50, 4965-4968	2	8
94	Nafion-induced metal-metal interactions in a platinum(II) terpyridyl acetylide complex: A luminescent sensor for detection of volatile organic compounds. <i>Chinese Journal of Chemistry</i> , 2010 , 22, 1204-1207	4.9	8

93	Supramolecular assemblies based on 2-ureido-4[1H]-pyrimidinone building block. <i>Science Bulletin</i> , 2006 , 51, 129-138		8
92	Optimal d-band-induced Cu3N as a cocatalyst on metal sulfides for boosting photocatalytic hydrogen evolution. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 22601-22606	13	8
91	Carbon Nanoframes: Well-Dispersed ZIF-Derived Co,N-Co-doped Carbon Nanoframes through Mesoporous-Silica-Protected Calcination as Efficient Oxygen Reduction Electrocatalysts (Adv. Mater. 8/2016). <i>Advanced Materials</i> , 2016 , 28, 1712-1712	24	8
90	Construction of Cyclobutanes by Multicomponent Cascade Reactions in Homogeneous Solution through Visible-Light Catalysis. <i>Chemistry - A European Journal</i> , 2019 , 25, 879-884	4.8	8
89	Enhancing the Supply of Activated Hydrogen to Promote Photocatalytic Nitrogen Fixation1521-1527		8
88	Photocatalysis: Alkali-Assisted Synthesis of Nitrogen Deficient Graphitic Carbon Nitride with Tunable Band Structures for Efficient Visible-Light-Driven Hydrogen Evolution (Adv. Mater. 16/2017). <i>Advanced Materials</i> , 2017 , 29,	24	7
87	Visible-Light-Triggered Selective Intermolecular [2+2] Cycloaddition of Extended Enones: 2-Oxo-3-enoates and 2,4-Dien-1-ones with Olefins. <i>Journal of Organic Chemistry</i> , 2019 , 84, 9257-9269	4.2	7
86	Visible-Light-Induced Nanoparticle Assembly for Effective Hydrogen Photogeneration. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 7286-7293	8.3	7
85	Efficient electronic communication-driven photoinduced charge-separation in 2-ureido-4[1H]-pyrimidinone quadruple hydrogen-bonded N,N-dimethylaniline-anthracene assemblies. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2018 , 355, 457-466	4.7	7
84	Supramolecular complexation and photocyclodimerization of methyl 3-methoxy-2-naphthoate with modified Ecyclodextrins. <i>Pure and Applied Chemistry</i> , 2011 , 83, 769-778	2.1	7
83	Synthesis and ion-binding studies of platinum(II) phenanthroline complexes containing crown ether moiety. <i>Science Bulletin</i> , 2006 , 51, 1005-1009		7
82	A simple, modular synthesis of bifunctional peptide-polynorbornenes for apoptosis induction and fluorescence imaging of cancer cells. <i>Polymer Chemistry</i> , 2018 , 9, 77-86	4.9	7
81	Self-Assembled Amphiphilic Water Oxidation Catalysts: Control of OD Bond Formation Pathways by Different Aggregation Patterns. <i>Angewandte Chemie</i> , 2016 , 128, 6337-6342	3.6	7
80	Benzyl CD and CN Bond Construction via CD Bond Dissociation of Oxime Ester under Visible Light Irradiation. <i>European Journal of Organic Chemistry</i> , 2020 , 2020, 1551-1558	3.2	7
79	Direct, Site-Selective and Redox-Neutral C -H Bond Functionalization of Tetrahydrofurans via Quantum Dots Photocatalysis. <i>Angewandte Chemie - International Edition</i> , 2021 ,	16.4	7
78	Direct 1,2-Dicarbonylation of Alkenes towards 1,4-Diketones via Photocatalysis. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 26822-26828	16.4	7
77	Switchable two-photon imaging of RGD-functionalized polynorbornenes with enhanced cellular uptake in living cells. <i>New Journal of Chemistry</i> , 2016 , 40, 3252-3260	3.6	6
76	A modular designed copolymer with anti-thrombotic activity and imaging capability. <i>Chemical Communications</i> , 2014 , 50, 9539-42	5.8	6

75	Innentitelbild: Graphene-Supported Ultrafine Metal Nanoparticles Encapsulated by Mesoporous Silica: Robust Catalysts for Oxidation and Reduction Reactions (Angew. Chem. 1/2014). <i>Angewandte Chemie</i> , 2014 , 126, 2-2	3.6	6	
74	Light-driven hydrogen evolution system with glutamic-acid-modified zinc porphyrin as photosensitizer and [FeFe]-hydrogenase model as catalyst. <i>Pure and Applied Chemistry</i> , 2013 , 85, 1405	-14T3	6	
73	Rational Design of Dot-on-Rod Nano-Heterostructure for Photocatalytic CO Reduction: Pivotal Role of Hole Transfer and Utilization. <i>Advanced Materials</i> , 2021 , e2106662	24	6	
7 ²	Identifying a Real Catalyst of [NiFe]-Hydrogenase Mimic for Exceptional H Photogeneration. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 18400-18404	16.4	6	
71	Tandem photoelectrochemical and photoredox catalysis for efficient and selective aryl halides functionalization by solar energy. <i>Matter</i> , 2021 , 4, 2354-2366	12.7	6	
70	A beryllium-selective microcantilever sensor modified with benzo-9-crown-3 functionalized polymer brushes. <i>Analytical Methods</i> , 2017 , 9, 3356-3360	3.2	5	
69	Controllable synthesis of 2- and 3-aryl-benzomorpholines from 2-aminophenols and 4-vinylphenols. <i>Chemical Communications</i> , 2020 , 56, 7941-7944	5.8	5	
68	Filamentous Virus Oriented Pyrene Excimer Emission and Its Efficient Energy Transfer. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2018 , 355, 32-37	4.7	5	
67	Thiolate-Mediated Photoinduced Synthesis of Ultrafine Ag2S Quantum Dots from Silver Nanoparticles. <i>Angewandte Chemie</i> , 2016 , 128, 15176-15181	3.6	5	
66	Stereoselective photodimerization of alkyl 3-alkoxyl-2-naphthoates. <i>Tetrahedron Letters</i> , 2011 , 52, 294	16- <u>2</u> 949	9 5	
65	Synthesis of Diazacrown Ethers with Chromophores and Their Photoinduced Charge-Separation with Methyl Viologen. <i>Chinese Journal of Chemistry</i> , 2010 , 19, 960-965	4.9	5	
64	Photocontrollable ion transport across a liquid membrane by anthracene end-labeled oligo-oxyethylenes. <i>Physical Chemistry Chemical Physics</i> , 2002 , 4, 4030-4035	3.6	5	
63	Monochromophore-Based Phosphorescence and Fluorescence from Pure Organic Assemblies for Ratiometric Hypoxia Detection. <i>Angewandte Chemie</i> , 2020 , 132, 23662-23666	3.6	5	
62	Nitrogenase inspired artificial photosynthetic nitrogen fixation. <i>CheM</i> , 2021 , 7, 1431-1450	16.2	5	
61	Multiple-State Emissions from Neat, Single-Component Molecular Solids: Suppression of Kasha's Rule. <i>Angewandte Chemie</i> , 2020 , 132, 10259-10264	3.6	4	
60	Photothermal Catalysis: Co-Based Catalysts Derived from Layered-Double-Hydroxide Nanosheets for the Photothermal Production of Light Olefins (Adv. Mater. 31/2018). <i>Advanced Materials</i> , 2018 , 30, 1870230	24	4	
59	Synthesis, Characterization, and Selective Sr2+ Sensing Study of Copper(I)-Bridged Calix[4]arene-Based Binuclear Alkynylplatinum(II) Complexes. <i>European Journal of Inorganic Chemistry</i> , 2017 , 2017, 5108-5113	2.3	4	
58	Zinc-Air Batteries: NiFe Layered Double Hydroxide Nanoparticles on Co,N-Codoped Carbon Nanoframes as Efficient Bifunctional Catalysts for Rechargeable ZincAir Batteries (Adv. Energy Materials, 2017, 7	21.8	4	

57	Ultrahydrophobicity of Polydimethylsiloxanes-Based Multilayered Thin Films. <i>Journal of Nanotechnology</i> , 2009 , 2009, 1-8	3.5	4
56	Selective Transport of Alkali-Metal Cations through Liquid Membranes by Non-Cyclic Carriers. <i>Chinese Journal of Chemistry</i> , 2010 , 20, 90-95	4.9	4
55	C-HIPDd(II) interaction-driven homochiral M helix formation of neutral (R,R)-bis(pyrrol-2-ylmethyl-eneamino) cyclohexane palladium(II) complex. <i>Science Bulletin</i> , 2007 , 52, 15	81-158	44
54	Hand-in-hand quantum dot assembly sensitized photocathodes for enhanced photoelectrochemical hydrogen evolution. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 26098-26104	13	4
53	Mechanistic Insights Into Iron(II) Bis(pyridyl)amine-Bipyridine Skeleton for Selective CO Photoreduction. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 26072-26079	16.4	4
52	Photocatalytic hydrogen evolution of 1-tetralones to Enaphthols by continuous-flow technology. <i>Catalysis Science and Technology</i> , 2019 , 9, 3337-3341	5.5	3
51	Photoredox Catalysis of Aromatic EKetoesters for in Situ Production of Transient and Persistent Radicals for Organic Transformation. <i>Angewandte Chemie</i> , 2020 , 132, 5403-5408	3.6	3
50	Sensitized Photocathodes: Recent Advances in Sensitized Photocathodes: From Molecular Dyes to Semiconducting Quantum Dots (Adv. Sci. 4/2018). <i>Advanced Science</i> , 2018 , 5, 1870023	13.6	3
49	Solution-processable graphenes by covalent functionalization of graphene oxide with polymeric monoamines. <i>Science China Chemistry</i> , 2016 , 59, 1018-1024	7.9	3
48	Synthesis of diastereometrically pure cubane-like photodimers from 2,4-pentanediyl-bis-2-naphthoates. <i>Photochemical and Photobiological Sciences</i> , 2014 , 13, 261-5	4.2	3
47	Stereoselective Photochemical Reaction of Cyclohexyl Phenyl Ketone within Lytropic Liquid Crystals Formed by Chiral Ionic Liquids. <i>Chinese Journal of Chemistry</i> , 2013 , 31, 603-606	4.9	3
46	Colorimetric and electrochemical Pb2+ detection by imine-bridged tetrathiafulvalene-pyridine derivatives. <i>Science in China Series B: Chemistry</i> , 2009 , 52, 765-770		3
45	Energy transfer of ionic dyes in mixed surfactant vesicle. <i>Research on Chemical Intermediates</i> , 2000 , 26, 575-585	2.8	3
44	Direct C-H Thiolation for Selective Cross-Coupling of Arenes with Thiophenols via Aerobic Visible-Light Catalysis. <i>Organic Letters</i> , 2021 , 23, 8082-8087	6.2	3
43	Ultrafast Vibrational Energy Transfer through the Covalent Bond and Intra- and Intermolecular Hydrogen Bonds in a Supramolecular Dimer by Two-Dimensional Infrared Spectroscopy. <i>Journal of Physical Chemistry B</i> , 2020 , 124, 544-555	3.4	3
42	Bioinspired metal complexes for energy-related photocatalytic small molecule transformation. <i>Chemical Communications</i> , 2020 , 56, 15496-15512	5.8	3
41	Bioinspired Selective Synthesis of Heterodimer 8-5' or 84' Neolignan Analogs. <i>Organic Letters</i> , 2021 , 23, 2816-2820	6.2	3
40	Semiconductor nanoparticles photocatalyze precise organic cycloaddition. <i>CheM</i> , 2021 , 7, 842-844	16.2	3

(2021-2016)

39	Hydrogen Evolution: CdS Nanoparticle-Decorated Cd Nanosheets for Efficient Visible Light-Driven Photocatalytic Hydrogen Evolution (Adv. Energy Mater. 3/2016). <i>Advanced Energy Materials</i> , 2016 , 6,	21.8	3
38	Catalytic Hydrogen Production Using A Cobalt Catalyst Bearing a Phosphinoamine Ligand. <i>ChemPhotoChem</i> , 2019 , 3, 220-224	3.3	3
37	Per-6-Thiol-Cyclodextrin Engineered [FeFe]-Hydrogenase Mimic/CdSe Quantum Dot Assembly for Photocatalytic Hydrogen Production. <i>Solar Rrl</i> , 2021 , 5, 2000474	7.1	3
36	Site-selective DO-mediated deuteration of diaryl alcohols via quantum dots photocatalysis. <i>Chemical Communications</i> , 2021 , 57, 6768-6771	5.8	3
35	Tandem [2 + 2] Cycloaddition/Rearrangement toward Carbazoles by Visible-Light Photocatalysis. <i>Organic Letters</i> , 2021 , 23, 2135-2139	6.2	3
34	Revealing Ammonia Quantification Minefield in Photo/Electrocatalysis. <i>Angewandte Chemie</i> , 2021 , 133, 21896-21899	3.6	3
33	N-lodosuccinimide and dioxygen in an air-enabled synthesis of 10-phenanthrenols under sunlight. <i>Green Chemistry</i> , 2021 , 23, 7193-7198	10	3
32	Photothermal CO2 Hydrogenation: Alumina-Supported CoFe Alloy Catalysts Derived from Layered-Double-Hydroxide Nanosheets for Efficient Photothermal CO2 Hydrogenation to Hydrocarbons (Adv. Mater. 3/2018). <i>Advanced Materials</i> , 2018 , 30, 1870015	24	2
31	Water Splitting: Ni3FeN Nanoparticles Derived from Ultrathin NiFe-Layered Double Hydroxide Nanosheets: An Efficient Overall Water Splitting Electrocatalyst (Adv. Energy Mater. 10/2016). <i>Advanced Energy Materials</i> , 2016 , 6,	21.8	2
30	Semi-artificial photoelectrochemical synthesis. <i>Joule</i> , 2021 , 5, 2771-2773	27.8	2
29	Triplet-Triplet Annihilation Upconversion Based on Silica Nanoparticles. <i>Acta Chimica Sinica</i> , 2019 , 77, 41	3.3	2
29		3.6	2
	77, 41 Direct Allylic C(sp3)⊞ and Vinylic C(sp2)⊞ Thiolation with Hydrogen Evolution by Quantum Dots		
28	77, 41 Direct Allylic C(sp3)⊞ and Vinylic C(sp2)⊞ Thiolation with Hydrogen Evolution by Quantum Dots and Visible Light. <i>Angewandte Chemie</i> , 2021 , 133, 11885-11889 Conformation-Controlled Diplatinum(II)-Ferrocene Dyads to Achieve Long-Lived Charge-Separated	3.6	2
28	Direct Allylic C(sp3) H and Vinylic C(sp2) H Thiolation with Hydrogen Evolution by Quantum Dots and Visible Light. <i>Angewandte Chemie</i> , 2021 , 133, 11885-11889 Conformation-Controlled Diplatinum(II)-Ferrocene Dyads to Achieve Long-Lived Charge-Separated States. <i>Chemistry - A European Journal</i> , 2016 , 22, 11962-6 Chiral Inductions in Excited State Reactions: Photodimerization of Alkyl 2-Naphthoates as a Model.	3.6 4.8	2
28 27 26	Direct Allylic C(sp3) and Vinylic C(sp2) Thiolation with Hydrogen Evolution by Quantum Dots and Visible Light. Angewandte Chemie, 2021, 133, 11885-11889 Conformation-Controlled Diplatinum(II)-Ferrocene Dyads to Achieve Long-Lived Charge-Separated States. Chemistry - A European Journal, 2016, 22, 11962-6 Chiral Inductions in Excited State Reactions: Photodimerization of Alkyl 2-Naphthoates as a Model. Photochemistry and Photobiology, 2019, 95, 24-32 Controllable Z/E-selective synthesis of Amino-ketoximes from N-nitrososulfonamides and aryl	3.6 4.8 3.6	2 2
28 27 26 25	Direct Allylic C(sp3) and Vinylic C(sp2) Thiolation with Hydrogen Evolution by Quantum Dots and Visible Light. Angewandte Chemie, 2021, 133, 11885-11889 Conformation-Controlled Diplatinum(II)-Ferrocene Dyads to Achieve Long-Lived Charge-Separated States. Chemistry - A European Journal, 2016, 22, 11962-6 Chiral Inductions in Excited State Reactions: Photodimerization of Alkyl 2-Naphthoates as a Model. Photochemistry and Photobiology, 2019, 95, 24-32 Controllable Z/E-selective synthesis of thino-ketoximes from N-nitrososulfonamides and aryl alkenes under neutral conditions. Organic Chemistry Frontiers, Hole-Transfer-Layer Modification of Quantum Dot-Sensitized Photocathodes for Dramatically	3.6 4.8 3.6 5.2	2 2 2

21	Probe Binding Mode and Structure of the Photocatalytic Center: Hydrogen Generation by Quantum Dots and Nickel Ions. <i>Energy & Energy & Ene</i>	4.1	2
20	Catalysts: NakedIMagnetically Recyclable Mesoporous AuFe2O3 Nanocrystal Clusters: A Highly Integrated Catalyst System (Adv. Funct. Mater. 9/2017). <i>Advanced Functional Materials</i> , 2017 , 27,	15.6	1
19	Self-assembled vesicles from amphiphilic platinum(II) terpyridyl complex in water. <i>Supramolecular Chemistry</i> , 2015 , 27, 298-302	1.8	1
18	Photocatalysts: Layered-Double-Hydroxide Nanosheets as Efficient Visible-Light-Driven Photocatalysts for Dinitrogen Fixation (Adv. Mater. 42/2017). <i>Advanced Materials</i> , 2017 , 29,	24	1
17	Photocatalysis: An Exceptional Artificial Photocatalyst, Nih-CdSe/CdS Core/Shell Hybrid, Made In Situ from CdSe Quantum Dots and Nickel Salts for Efficient Hydrogen Evolution (Adv. Mater. 45/2013). <i>Advanced Materials</i> , 2013 , 25, 6634-6634	24	1
16	Reversible Disassembly and Intercalation of 2-Ureido-4[1H]-Pyrimidinone Quadruple Hydrogen-bonded Supramolecular Assembly by Fluoride and Lead Ions. <i>Chinese Journal of Chemistry</i> , 2011 , 29, 2684-2688	4.9	1
15	Novel photo-induced coupling reactions of 9-fluorenylidene-malononitrile or 1,1-diphenyl-2,2-dicyanoethylene with 10-methyl-9,10-dihydroacridine. A study on the photophysics of the reaction. <i>Chinese Journal of Chemistry</i> , 2010 , 21, 1400-1402	4.9	1
14	Site-Selective N-1 and C-3 Heteroarylation of Indole with Het-eroarylnitriles by Organocatalysis under Visible Light <i>Angewandte Chemie - International Edition</i> , 2022 ,	16.4	1
13	Adsorptive separation of cyclohexanol and cyclohexanone by nonporous adaptive crystals of RhombicArene <i>Chemical Science</i> , 2021 , 12, 15528-15532	9.4	1
12	Identifying a Real Catalyst of [NiFe]-Hydrogenase Mimic for Exceptional H2 Photogeneration. <i>Angewandte Chemie</i> , 2020 , 132, 18558-18562	3.6	1
11	Silica-supported dual-dye nanoprobes for ratiometric hypoxia sensing. <i>Materials Chemistry Frontiers</i> , 2021 , 5, 458-464	7.8	1
10	Synthesis of Finite Molecular Nanotubes by Connecting Axially Functionalized Macrocycles. <i>CCS Chemistry</i> ,1-9	7.2	O
9	A Photochemical Route towards Metal Sulfide Nanosheets from Layered Metal Thiolate Complexes. <i>Angewandte Chemie</i> , 2019 , 131, 8531	3.6	
8	Superhydrophilic Graphdiyne: Superhydrophilic Graphdiyne Accelerates Interfacial Mass/Electron Transportation to Boost Electrocatalytic and Photoelectrocatalytic Water Oxidation Activity (Adv. Funct. Mater. 16/2019). <i>Advanced Functional Materials</i> , 2019 , 29, 1970107	15.6	
7	Innentitelbild: Multiple-State Emissions from Neat, Single-Component Molecular Solids: Suppression of Kasha's Rule (Angew. Chem. 25/2020). <i>Angewandte Chemie</i> , 2020 , 132, 9870-9870	3.6	
6	Chen-Ho Tung and his research on supramolecular photochemistry. <i>Journal of Photochemistry and Photobiology A: Chemistry</i> , 2018 , 355, 2-8	4.7	
5	Nanoparticles: Spontaneous Organization of Inorganic Nanoparticles into Nanovesicles Triggered by UV Light (Adv. Mater. 32/2014). <i>Advanced Materials</i> , 2014 , 26, 5731-5731	24	
4	Tuning the lowest excited-states of platinum (II) terpyridyl acetylide complex bearing azacrown moiety: Stimulated by transition metal ions. <i>Science Bulletin</i> , 2004 , 49, 416-418		

LIST OF PUBLICATIONS

3	Extended Composite Nanostructures for Enhanced Catalytic Activity in the Heck Reaction (Angew. Chem. 6/2016). <i>Angewandte Chemie</i> , 2016 , 128, 2316-2316	3.6
2	Biosensing: A Hydrogen-Bonded-Supramolecular-Polymer-Based Nanoprobe for Ratiometric Oxygen Sensing in Living Cells (Adv. Funct. Mater. 30/2016). <i>Advanced Functional Materials</i> , 2016 , 26, 5580-5580	15.6
1	Cross-Coupling Hydrogen Evolution to Avoid the Use of External Oxidants. <i>Springer Handbooks</i> , 2022 , 1457-1480	1.3