Guy-Bart V Stan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5057983/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	A modular RNA interference system for multiplexed gene regulation. Nucleic Acids Research, 2022, 50, 1783-1793.	6.5	7
2	Building an RNA-Based Toggle Switch Using Inhibitory RNA Aptamers. ACS Synthetic Biology, 2022, 11, 562-569.	1.9	4
3	Spores-on-a-chip: new frontiers for spore research. Trends in Microbiology, 2022, 30, 515-518.	3.5	4
4	A linear programming-based strategy to save pipette tips in automated DNA assembly. Synthetic Biology, 2022, 7, ysac004.	1.2	4
5	Resource-aware whole-cell model of division of labour in a microbial consortium for complex-substrate degradation. Microbial Cell Factories, 2022, 21, .	1.9	4
6	<i>In situ</i> Generation of RNA Complexes for Synthetic Molecular Strand-Displacement Circuits in Autonomous Systems. Nano Letters, 2021, 21, 265-271.	4.5	11
7	rfaRm: An R client-side interface to facilitate the analysis of the Rfam database of RNA families. PLoS ONE, 2021, 16, e0245280.	1.1	1
8	A Modelling Framework Linking Resource-Based Stochastic Translation to the Optimal Design of Synthetic Constructs. Biology, 2021, 10, 37.	1.3	5
9	Handhold-Mediated Strand Displacement: A Nucleic Acid Based Mechanism for Generating Far-from-Equilibrium Assemblies through Templated Reactions. ACS Nano, 2021, 15, 3272-3283.	7.3	22
10	Stationary Distributions of Continuous-Time Markov Chains: A Review of Theory and Truncation-Based Approximations. SIAM Review, 2021, 63, 3-64.	4.2	15
11	Approximations of Countably Infinite Linear Programs over Bounded Measure Spaces. SIAM Journal on Optimization, 2021, 31, 604-625.	1.2	2
12	Quasi-robust control of biochemical reaction networks via stochastic morphing. Journal of the Royal Society Interface, 2021, 18, 20200985.	1.5	6
13	Control engineering and synthetic biology: working in synergy for the analysis and control of microbial systems. Current Opinion in Microbiology, 2021, 62, 68-75.	2.3	22
14	Quorum sensing in synthetic biology: A review. Current Opinion in Systems Biology, 2021, 28, 100378.	1.3	28
15	Homeostasis. Cell Systems, 2021, 12, 1124-1126.	2.9	0
16	Characterization and mitigation of gene expression burden in mammalian cells. Nature Communications, 2020, 11, 4641.	5.8	92
17	SBOL Visual 2 Ontology. ACS Synthetic Biology, 2020, 9, 972-977.	1.9	3
18	Solving Optimal Control Problems for Monotone Systems Using the Koopman Operator. Lecture Notes in Control and Information Sciences, 2020, , 283-312.	0.6	0

#	Article	IF	CITATIONS
19	Bounding the stationary distributions of the chemical master equation via mathematical programming. Journal of Chemical Physics, 2019, 151, 034109.	1.2	18
20	Riboswitch identification using Ligase-Assisted Selection for the Enrichment of Responsive Ribozymes (LigASERR). Synthetic Biology, 2019, 4, ysz019.	1.2	3
21	The Exit Time Finite State Projection Scheme: Bounding Exit Distributions and Occupation Measures of Continuous-Time Markov Chains. SIAM Journal of Scientific Computing, 2019, 41, A748-A769.	1.3	13
22	Host-aware synthetic biology. Current Opinion in Systems Biology, 2019, 14, 66-72.	1.3	83
23	Whole-Cell Biosensor with Tunable Limit of Detection Enables Low-Cost Agglutination Assays for Medical Diagnostic Applications. ACS Sensors, 2019, 4, 370-378.	4.0	57
24	An Automatic Sparse Model Estimation Method Guided by Constraints That Encode System Properties. , 2019, , .		1
25	Computational Re-design of Synthetic Genetic Oscillators for Independent Amplitude and Frequency Modulation. Cell Systems, 2018, 6, 508-520.e5.	2.9	30
26	Cell-free prediction of protein expression costs for growing cells. Nature Communications, 2018, 9, 1457.	5.8	85
27	Portable gene expression guaranteed. Nature Biotechnology, 2018, 36, 313-314.	9.4	1
28	Identification of Nonlinear State-Space Systems From Heterogeneous Datasets. IEEE Transactions on Control of Network Systems, 2018, 5, 737-747.	2.4	13
29	Investigating the consequences of asymmetric endoplasmic reticulum inheritance in Saccharomyces cerevisiae under stress using a combination of single cell measurements and mathematical modelling. Synthetic and Systems Biotechnology, 2018, 3, 64-75.	1.8	3
30	Burden-driven feedback control of gene expression. Nature Methods, 2018, 15, 387-393.	9.0	281
31	Tools for engineering coordinated system behaviour in synthetic microbial consortia. Nature Communications, 2018, 9, 2677.	5.8	144
32	Synthetic Biology Open Language Visual (SBOL Visual) Version 2.0. Journal of Integrative Bioinformatics, 2018, 15, .	1.0	21
33	A Minimal Realization Technique for the Dynamical Structure Function of a Class of LTI Systems. IEEE Transactions on Control of Network Systems, 2017, 4, 301-311.	2.4	8
34	Intracellular delivery of biologic therapeutics by bacterial secretion systems. Expert Reviews in Molecular Medicine, 2017, 19, e6.	1.6	22
35	The Interplay between Feedback and Buffering in Cellular Homeostasis. Cell Systems, 2017, 5, 498-508.e23.	2.9	27
36	Constructing synthetic biology workflows in the cloud. Engineering Biology, 2017, 1, 61-65.	0.8	9

#	Article	IF	CITATIONS
37	Biomolecular implementation of nonlinear system theoretic operators. , 2016, , .		5
38	Online model selection for synthetic gene networks. , 2016, , .		5
39	Bounding Stationary Averages of Polynomial Diffusions via Semidefinite Programming. SIAM Journal of Scientific Computing, 2016, 38, A3891-A3920.	1.3	20
40	Overloaded and stressed: whole-cell considerations for bacterial synthetic biology. Current Opinion in Microbiology, 2016, 33, 123-130.	2.3	203
41	Shaping pulses to control bistable systems: Analysis, computation and counterexamples. Automatica, 2016, 63, 254-264.	3.0	30
42	A Sparse Bayesian Approach to the Identification of Nonlinear State-Space Systems. IEEE Transactions on Automatic Control, 2016, 61, 182-187.	3.6	94
43	Identifying biochemical reaction networks from heterogeneous datasets. , 2015, , .		4
44	Shaping pulses to control bistable biological systems. , 2015, , .		4
45	Simplified mechanistic models of gene regulation for analysis and design. Journal of the Royal Society Interface, 2015, 12, 20150312.	1.5	20
46	Modelling Synthetic Biology Systems. , 2015, , 89-108.		2
47	Noise Propagation in Synthetic Gene Circuits for Metabolic Control. ACS Synthetic Biology, 2015, 4, 116-125.	1.9	76
48	A Forward-Design Approach to Increase the Production of Poly-3-Hydroxybutyrate in Genetically Engineered Escherichia coli. PLoS ONE, 2015, 10, e0117202.	1.1	11
49	Online fault diagnosis for nonlinear power systems. Automatica, 2015, 55, 27-36.	3.0	36
50	Quantifying cellular capacity identifies gene expression designs with reduced burden. Nature Methods, 2015, 12, 415-418.	9.0	398
51	GeneGuard: A Modular Plasmid System Designed for Biosafety. ACS Synthetic Biology, 2015, 4, 307-316.	1.9	103
52	SBOL Visual: A Graphical Language for Genetic Designs. PLoS Biology, 2015, 13, e1002310.	2.6	73
53	Mathematical Modeling of HIV Dynamics After Antiretroviral Therapy Initiation: A Clinical Research Study. AIDS Research and Human Retroviruses, 2014, 30, 831-834.	0.5	7

54 Model Reduction of Genetic-Metabolic Networks via Time Scale Separation. , 2014, , 181-210.

5

#	Article	IF	CITATIONS
55	Mathematical Modeling of HIV Dynamics After Antiretroviral Therapy Initiation: A Review. BioResearch Open Access, 2014, 3, 233-241.	2.6	22
56	The Synthetic Biology Open Language (SBOL) provides a community standard for communicating designs in synthetic biology. Nature Biotechnology, 2014, 32, 545-550.	9.4	247
57	Distributed Reconstruction of Nonlinear Networks: An ADMM Approach. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2014, 47, 3208-3213.	0.4	9
58	Analysis of Synchronizing Biochemical Networks via Incremental Dissipativity. , 2014, , 117-139.		0
59	Tuning the dials of Synthetic Biology. Microbiology (United Kingdom), 2013, 159, 1236-1253.	0.7	87
60	Nonlinear heat transfer processes in a two-phase thermofluidic oscillator. Applied Energy, 2013, 104, 958-977.	5.1	33
61	Decentralised minimum-time consensus. Automatica, 2013, 49, 1227-1235.	3.0	104
62	Building-in biosafety for synthetic biology. Microbiology (United Kingdom), 2013, 159, 1221-1235.	0.7	110
63	Real-time fault diagnosis for large-scale nonlinear power networks. , 2013, , .		3
64	Synthetic gene circuits for metabolic control: design trade-offs and constraints. Journal of the Royal Society Interface, 2013, 10, 20120671.	1.5	70
65	Observability and coarse graining of consensus dynamics through the external equitable partition. Physical Review E, 2013, 88, 042805.	0.8	49
66	On periodic reference tracking using batch-mode reinforcement learning with application to gene regulatory network control. , 2013, , .		8
67	Systematic Computation of Nonlinear Cellular and Molecular Dynamics with Low-Power CytoMimetic Circuits: A Simulation Study. PLoS ONE, 2013, 8, e53591.	1.1	9
68	Stochastic simulation of enzymatic reactions under transcriptional feedback regulation. , 2013, , .		2
69	Reconstruction of arbitrary biochemical reaction networks: A compressive sensing approach. , 2012, , .		23
70	Engineering and ethical perspectives in synthetic biology. EMBO Reports, 2012, 13, 584-590.	2.0	49
71	Clobal State Synchronization in Networks of Cyclic Feedback Systems. IEEE Transactions on Automatic Control, 2012, 57, 478-483.	3.6	62

72 Design tradeoffs in a synthetic gene control circuit for metabolic networks. , 2012, , .

3

#	Article	IF	CITATIONS
73	Design constraints in an operon circuit for engineered control of metabolic networks. , 2012, , .		0
74	Arterial reservoir-excess pressure and ventricular work. Medical and Biological Engineering and Computing, 2012, 50, 419-424.	1.6	52
75	Fast Consensus Via Predictive Pinning Control. IEEE Transactions on Circuits and Systems I: Regular Papers, 2011, 58, 2247-2258.	3.5	109
76	Computational design approaches and tools for synthetic biology. Integrative Biology (United) Tj ETQq0 0 0 rgB	T /Qverloci	10 Tf 50 62
77	Essential information for synthetic DNA sequences. Nature Biotechnology, 2011, 29, 22-22.	9.4	40
78	Robust dynamical network structure reconstruction. Automatica, 2011, 47, 1230-1235.	3.0	110
79	Networks of passive oscillators. , 2011, , .		0
80	The circadian oscillator gene <i>GIGANTEA</i> mediates a long-term response of the <i>Arabidopsis thaliana</i> circadian clock to sucrose. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 5104-5109.	3.3	205
81	Correct biological timing in <i>Arabidopsis</i> requires multiple light-signaling pathways. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 13171-13176.	3.3	73
82	Constructive synchronization of networked feedback systems. , 2010, , .		14
83	Robust dynamical network reconstruction. , 2010, , .		8
84	Decentralised final value theorem for discrete-time LTI systems with application to minimal-time distributed consensus. , 2009, , .		18
85	Minimal dynamical structure realisations with application to network reconstruction from data. , 2009, , .		11
86	Apoptosis characterizes immunological failure of HIV infected patients. Control Engineering Practice, 2009, 17, 798-804.	3.2	9
87	Ultrafast consensus via predictive mechanisms. Europhysics Letters, 2008, 83, 40003.	0.7	39
88	Robust synchronization in networks of cyclic feedback systems. , 2008, , .		5
89	Dynamical structure analysis of sparsity and minimality heuristics for reconstruction of biochemical networks. , 2008, , .		6
90	Collective behavior coordination with predictive mechanisms. IEEE Circuits and Systems Magazine, 2008, 8, 67-85.	2.6	74

#	Article	IF	CITATIONS
91	Global Asymptotic Stability of the Limit Cycle in Piecewise Linear versions of the Goodwin Oscillator. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2008, 41, 3659-3664.	0.4	4
92	Output synchronization in networks of cyclic biochemical oscillators. Proceedings of the American Control Conference, 2007, , .	0.0	22
93	Analysis of Interconnected Oscillators by Dissipativity Theory. IEEE Transactions on Automatic Control, 2007, 52, 256-270.	3.6	233
94	The cross-entropy method for power system combinatorial optimization problems. , 2007, , .		34
95	Clinical data based optimal STI strategies for HIV: a reinforcement learning approach. , 2006, , .		40
96	Feedback mechanisms for global oscillations in Lure systems. Systems and Control Letters, 2005, 54, 809-818.	1.3	26
97	Clobal analysis of limit cycles in networks of oscillators. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2004, 37, 1153-1158.	0.4	6
98	The Interplay Between Feedback and Buffering in Homeostasis. SSRN Electronic Journal, 0, , .	0.4	1