James J Collins

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/5057945/james-j-collins-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

180 47,068 192 97 h-index g-index citations papers 58,062 192 25.5 7.9 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
180	Field validation of the performance of paper-based tests for the detection of the Zika and chikungunya viruses in serum samples <i>Nature Biomedical Engineering</i> , 2022 ,	19	2
179	An engineered live biotherapeutic for the prevention of antibiotic-induced dysbiosis <i>Nature Biomedical Engineering</i> , 2022 ,	19	5
178	Modulating the evolutionary trajectory of tolerance using antibiotics with different metabolic dependencies <i>Nature Communications</i> , 2022 , 13, 2525	17.4	2
177	Increased energy demand from anabolic-catabolic processes drives flactam antibiotic lethality <i>Cell Chemical Biology</i> , 2021 ,	8.2	2
176	Engineering living therapeutics with synthetic biology. <i>Nature Reviews Drug Discovery</i> , 2021 , 20, 941-96	064.1	17
175	RNA-responsive elements for eukaryotic translational control. <i>Nature Biotechnology</i> , 2021 ,	44.5	1
174	Cytoplasmic condensation induced by membrane damage is associated with antibiotic lethality. <i>Nature Communications</i> , 2021 , 12, 2321	17.4	9
173	Designing Biological Circuits: Synthetic Biology Within the Operon Model and Beyond. <i>Annual Review of Biochemistry</i> , 2021 , 90, 221-244	29.1	9
172	Wearable materials with embedded synthetic biology sensors for biomolecule detection. <i>Nature Biotechnology</i> , 2021 , 39, 1366-1374	44.5	54
171	Deep-Learning Resources for Studying Glycan-Mediated Host-Microbe Interactions. <i>Cell Host and Microbe</i> , 2021 , 29, 132-144.e3	23.4	15
170	Anomalous COVID-19 tests hinder researchers. <i>Science</i> , 2021 , 371, 244-245	33.3	8
169	Clinically relevant mutations in core metabolic genes confer antibiotic resistance. <i>Science</i> , 2021 , 371,	33.3	56
168	Engineering advanced logic and distributed computing in human CAR immune cells. <i>Nature Communications</i> , 2021 , 12, 792	17.4	20
167	Synthetic biology in the clinic: engineering vaccines, diagnostics, and therapeutics. <i>Cell</i> , 2021 , 184, 881-8	8 96 .2	19
166	Using deep learning for dermatologist-level detection of suspicious pigmented skin lesions from wide-field images. <i>Science Translational Medicine</i> , 2021 , 13,	17.5	18
165	CRISPR-based diagnostics. <i>Nature Biomedical Engineering</i> , 2021 , 5, 643-656	19	80
164	Minimally instrumented SHERLOCK (miSHERLOCK) for CRISPR-based point-of-care diagnosis of SARS-CoV-2 and emerging variants. <i>Science Advances</i> , 2021 , 7,	14.3	36

(2019-2021)

163	Deep learning identifies synergistic drug combinations for treating COVID-19. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2021 , 118,	11.5	18
162	Evidence that coronavirus superspreading is fat-tailed. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 29416-29418	11.5	52
161	Predictive biology: modelling, understanding and harnessing microbial complexity. <i>Nature Reviews Microbiology</i> , 2020 , 18, 507-520	22.2	41
160	Point-of-Care Devices to Detect Zika and Other Emerging Viruses. <i>Annual Review of Biomedical Engineering</i> , 2020 , 22, 371-386	12	10
159	Cell-free biosensors for rapid detection of water contaminants. <i>Nature Biotechnology</i> , 2020 , 38, 1451-14	459 .5	75
158	A Deep Learning Approach to Antibiotic Discovery. <i>Cell</i> , 2020 , 180, 688-702.e13	56.2	430
157	A CRISPR-based assay for the detection of opportunistic infections post-transplantation and for the monitoring of transplant rejection. <i>Nature Biomedical Engineering</i> , 2020 , 4, 601-609	19	34
156	A deep learning approach to programmable RNA switches. <i>Nature Communications</i> , 2020 , 11, 5057	17.4	27
155	Eradicating Bacterial Persisters with Combinations of Strongly and Weakly Metabolism-Dependent Antibiotics. <i>Cell Chemical Biology</i> , 2020 , 27, 1544-1552.e3	8.2	20
154	Parallel bimodal single-cell sequencing of transcriptome and chromatin accessibility. <i>Genome Research</i> , 2020 , 30, 1027-1039	9.7	22
153	Ultrasensitive CRISPR-based diagnostic for field-applicable detection of species in symptomatic and asymptomatic malaria. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 25722-25731	11.5	48
152	Diversification of reprogramming trajectories revealed by parallel single-cell transcriptome and chromatin accessibility sequencing. <i>Science Advances</i> , 2020 , 6,	14.3	12
151	Creating CRISPR-responsive smart materials for diagnostics and programmable cargo release. <i>Nature Protocols</i> , 2020 , 15, 3030-3063	18.8	16
150	Continuous bioactivity-dependent evolution of an antibiotic biosynthetic pathway. <i>Nature Communications</i> , 2020 , 11, 4202	17.4	7
149	Bacterial metabolic state more accurately predicts antibiotic lethality than growth rate. <i>Nature Microbiology</i> , 2019 , 4, 2109-2117	26.6	81
148	Programmable CRISPR-responsive smart materials. <i>Science</i> , 2019 , 365, 780-785	33.3	148
147	Engineering microbial peer pressure. <i>Science</i> , 2019 , 365, 986-987	33.3	1
146	A White-Box Machine Learning Approach for Revealing Antibiotic Mechanisms of Action. <i>Cell</i> , 2019 , 177, 1649-1661.e9	56.2	127

145	Complex signal processing in synthetic gene circuits using cooperative regulatory assemblies. <i>Science</i> , 2019 , 364, 593-597	33.3	67
144	A multiplexable assay for screening antibiotic lethality against drug-tolerant bacteria. <i>Nature Methods</i> , 2019 , 16, 303-306	21.6	19
143	Definitions and guidelines for research on antibiotic persistence. <i>Nature Reviews Microbiology</i> , 2019 , 17, 441-448	22.2	351
142	A systems biology pipeline identifies regulatory networks for stem cell engineering. <i>Nature Biotechnology</i> , 2019 , 37, 810-818	44.5	14
141	Bacterial Metabolism and Antibiotic Efficacy. <i>Cell Metabolism</i> , 2019 , 30, 251-259	24.6	148
140	De novo-designed translation-repressing riboregulators for multi-input cellular logic. <i>Nature Chemical Biology</i> , 2019 , 15, 1173-1182	11.7	48
139	Targeting Antibiotic Tolerance, Pathogen by Pathogen. <i>Cell</i> , 2018 , 172, 1228-1238	56.2	95
138	Reconstruction of complex single-cell trajectories using CellRouter. <i>Nature Communications</i> , 2018 , 9, 892	17.4	49
137	Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6. <i>Science</i> , 2018 , 360, 439-444	33.3	916
136	Universal Chimeric Antigen Receptors for Multiplexed and Logical Control of T Cell Responses. <i>Cell</i> , 2018 , 173, 1426-1438.e11	56.2	297
135	CRISPR-based genomic tools for the manipulation of genetically intractable microorganisms. <i>Nature Reviews Microbiology</i> , 2018 , 16, 333-339	22.2	68
134	Understanding Biological Regulation Through Synthetic Biology. <i>Annual Review of Biophysics</i> , 2018 , 47, 399-423	21.1	55
133	Precise Cas9 targeting enables genomic mutation prevention. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 3669-3673	11.5	18
132	A CRISPR-Cas9-based gene drive platform for genetic interaction analysis in Candida albicans. <i>Nature Microbiology</i> , 2018 , 3, 73-82	26.6	95
131	BioBits Explorer: A modular synthetic biology education kit. Science Advances, 2018, 4, eaat5105	14.3	68
130	BioBitsBright: A fluorescent synthetic biology education kit. <i>Science Advances</i> , 2018 , 4, eaat5107	14.3	55
129	An enhanced CRISPR repressor for targeted mammalian gene regulation. <i>Nature Methods</i> , 2018 , 15, 611	<i>-</i> 5 61 6	192
128	A low-cost paper-based synthetic biology platform for analyzing gut microbiota and host biomarkers. <i>Nature Communications</i> , 2018 , 9, 3347	17.4	139

127	Next-Generation Machine Learning for Biological Networks. <i>Cell</i> , 2018 , 173, 1581-1592	56.2	385
126	Probiotic strains detect and suppress cholera in mice. Science Translational Medicine, 2018, 10,	17.5	114
125	CRISPR Guide RNA Cloning for Mammalian Systems. Journal of Visualized Experiments, 2018,	1.6	3
124	Next-generation biocontainment systems for engineered organisms. <i>Nature Chemical Biology</i> , 2018 , 14, 530-537	11.7	96
123	Designing microbial consortia with defined social interactions. <i>Nature Chemical Biology</i> , 2018 , 14, 821-8	82 9 1.7	141
122	Carbon Sources Tune Antibiotic Susceptibility in Pseudomonas aeruginosa via Tricarboxylic Acid Cycle Control. <i>Cell Chemical Biology</i> , 2017 , 24, 195-206	8.2	166
121	A Blueprint for a Synthetic Genetic Feedback Controller to Reprogram Cell Fate. <i>Cell Systems</i> , 2017 , 4, 109-120.e11	10.6	43
120	Nucleic acid detection with CRISPR-Cas13a/C2c2. <i>Science</i> , 2017 , 356, 438-442	33.3	1240
119	Antibiotic efficacy-context matters. Current Opinion in Microbiology, 2017, 39, 73-80	7.9	55
118	ZSCAN10 expression corrects the genomic instability of iPSCs from aged donors. <i>Nature Cell Biology</i> , 2017 , 19, 1037-1048	23.4	28
117	Using Engineered Bacteria to Characterize Infection Dynamics and Antibiotic Effects In Vivo. <i>Cell Host and Microbe</i> , 2017 , 22, 263-268.e4	23.4	27
116	Biophysical Constraints Arising from Compositional Context in Synthetic Gene Networks. <i>Cell Systems</i> , 2017 , 5, 11-24.e12	10.6	63
115	Lethality of MalE-LacZ hybrid protein shares mechanistic attributes with oxidative component of antibiotic lethality. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, 9164-9169	11.5	22
114	Comprehensive Mapping of Pluripotent Stem Cell Metabolism Using Dynamic Genome-Scale Network Modeling. <i>Cell Reports</i> , 2017 , 21, 2965-2977	10.6	41
113	Understanding and Sensitizing Density-Dependent Persistence to Quinolone Antibiotics. <i>Molecular Cell</i> , 2017 , 68, 1147-1154.e3	17.6	63
112	Antibiotic-Induced Changes to the Host Metabolic Environment Inhibit Drug Efficacy and Alter Immune Function. <i>Cell Host and Microbe</i> , 2017 , 22, 757-765.e3	23.4	112
111	Complex cellular logic computation using ribocomputing devices. <i>Nature</i> , 2017 , 548, 117-121	50.4	211
110	Portable, On-Demand Biomolecular Manufacturing. <i>Cell</i> , 2016 , 167, 248-259.e12	56.2	211

109	Creating Single-Copy Genetic Circuits. <i>Molecular Cell</i> , 2016 , 63, 329-336	17.6	46
108	LIN28 Regulates Stem Cell Metabolism and Conversion to Primed Pluripotency. <i>Cell Stem Cell</i> , 2016 , 19, 66-80	18	192
107	RNAi Reveals Phase-Specific Global Regulators of Human Somatic Cell Reprogramming. <i>Cell Reports</i> , 2016 , 15, 2597-607	10.6	32
106	Contributions of microbiome and mechanical deformation to intestinal bacterial overgrowth and inflammation in a human gut-on-a-chip. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, E7-15	11.5	523
105	©eadman\und \underscode\underscode\underscolonicrobial kill switches for bacterial containment. <i>Nature Chemical Biology</i> , 2016 , 12, 82-6	11.7	163
104	A role for the bacterial GATC methylome in antibiotic stress survival. <i>Nature Genetics</i> , 2016 , 48, 581-6	36.3	55
103	Multiple mechanisms disrupt the let-7 microRNA family in neuroblastoma. <i>Nature</i> , 2016 , 535, 246-51	50.4	125
102	Ribocomputing devices for sophisticated in vivo logic computation 2016,		1
101	Chemogenomics and orthology-based design of antibiotic combination therapies. <i>Molecular Systems Biology</i> , 2016 , 12, 872	12.2	60
100	Comparison of Cas9 activators in multiple species. <i>Nature Methods</i> , 2016 , 13, 563-567	21.6	308
99	Synthetic biology platform technologies for antimicrobial applications. <i>Advanced Drug Delivery Reviews</i> , 2016 , 105, 35-43	18.5	35
98	Rapid, Low-Cost Detection of Zika Virus Using Programmable Biomolecular Components. <i>Cell</i> , 2016 , 165, 1255-1266	56.2	697
	, 103, 1233 1200	30.2	
97	Engineering Models to Scale. <i>Cell</i> , 2016 , 165, 516-7	56.2	1
97 96			
	Engineering Models to Scale. <i>Cell</i> , 2016 , 165, 516-7 Targeted erythropoietin selectively stimulates red blood cell expansion in vivo. <i>Proceedings of the</i>	56.2	
96	Engineering Models to Scale. <i>Cell</i> , 2016 , 165, 516-7 Targeted erythropoietin selectively stimulates red blood cell expansion in vivo. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, 5245-50	56.2	8
96 95	Engineering Models to Scale. <i>Cell</i> , 2016 , 165, 516-7 Targeted erythropoietin selectively stimulates red blood cell expansion in vivo. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, 5245-50 Engineered Phagemids for Nonlytic, Targeted Antibacterial Therapies. <i>Nano Letters</i> , 2015 , 15, 4808-13 Antibiotic efficacy is linked to bacterial cellular respiration. <i>Proceedings of the National Academy of</i>	56.2 11.5	8 66

91	Bactericidal Antibiotics Induce Toxic Metabolic Perturbations that Lead to Cellular Damage. <i>Cell Reports</i> , 2015 , 13, 968-80	10.6	251
90	Cas9 gRNA engineering for genome editing, activation and repression. <i>Nature Methods</i> , 2015 , 12, 1051	-421.6	2 10
89	Systematic identification of factors for provirus silencing in embryonic stem cells. <i>Cell</i> , 2015 , 163, 230-4	1556.2	117
88	Unraveling the physiological complexities of antibiotic lethality. <i>Annual Review of Pharmacology and Toxicology</i> , 2015 , 55, 313-32	17.9	161
87	Synthetic biology devices for in vitro and in vivo diagnostics. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 14429-35	11.5	201
86	Boosting bacterial metabolism to combat antibiotic resistance. <i>Cell Metabolism</i> , 2015 , 21, 154-155	24.6	39
85	Chromatin regulation at the frontier of synthetic biology. <i>Nature Reviews Genetics</i> , 2015 , 16, 159-71	30.1	76
84	A brief history of synthetic biology. <i>Nature Reviews Microbiology</i> , 2014 , 12, 381-90	22.2	460
83	Programmable bacteria detect and record an environmental signal in the mammalian gut. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 4838-43	11.5	233
82	Bone marrow-on-a-chip replicates hematopoietic niche physiology in vitro. <i>Nature Methods</i> , 2014 , 11, 663-9	21.6	293
81	Paper-based synthetic gene networks. <i>Cell</i> , 2014 , 159, 940-54	56.2	451
80	Toehold switches: de-novo-designed regulators of gene expression. <i>Cell</i> , 2014 , 159, 925-39	56.2	459
79	Antibiotics induce redox-related physiological alterations as part of their lethality. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, E2100-9	11.5	481
78	Tunable protein degradation in bacteria. <i>Nature Biotechnology</i> , 2014 , 32, 1276-81	44.5	130
77	CellNet: network biology applied to stem cell engineering. <i>Cell</i> , 2014 , 158, 903-915	56.2	358
76	Dissecting engineered cell types and enhancing cell fate conversion via CellNet. <i>Cell</i> , 2014 , 158, 889-90	256.2	181
75	Using targeted chromatin regulators to engineer combinatorial and spatial transcriptional regulation. <i>Cell</i> , 2014 , 158, 110-20	56.2	93
74	A community effort to assess and improve drug sensitivity prediction algorithms. <i>Nature Biotechnology</i> , 2014 , 32, 1202-12	44.5	447

73	Antibiotics and the gut microbiota. <i>Journal of Clinical Investigation</i> , 2014 , 124, 4212-8	15.9	375
72	Syntrophic exchange in synthetic microbial communities. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2014 , 111, E2149-56	11.5	322
71	Deconstructing transcriptional heterogeneity in pluripotent stem cells. <i>Nature</i> , 2014 , 516, 56-61	50.4	262
70	Synthetic biology: How best to build a cell. <i>Nature</i> , 2014 , 509, 155-7	50.4	24
69	Induction of multipotential hematopoietic progenitors from human pluripotent stem cells via respecification of lineage-restricted precursors. <i>Cell Stem Cell</i> , 2013 , 13, 459-70	18	190
68	Bactericidal antibiotics induce mitochondrial dysfunction and oxidative damage in Mammalian cells. <i>Science Translational Medicine</i> , 2013 , 5, 192ra85	17.5	285
67	Silver enhances antibiotic activity against gram-negative bacteria. <i>Science Translational Medicine</i> , 2013 , 5, 190ra81	17.5	453
66	Potentiating antibacterial activity by predictably enhancing endogenous microbial ROS production. <i>Nature Biotechnology</i> , 2013 , 31, 160-5	44.5	259
65	Antibiotic treatment expands the resistance reservoir and ecological network of the phage metagenome. <i>Nature</i> , 2013 , 499, 219-22	50.4	352
64	Microbial persistence and the road to drug resistance. <i>Cell Host and Microbe</i> , 2013 , 13, 632-42	23.4	306
63	Salmonella typhimurium intercepts Escherichia coli signaling to enhance antibiotic tolerance. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2013 , 110, 14420-5	11.5	113
62	Iterative plug-and-play methodology for constructing and modifying synthetic gene networks. <i>Nature Methods</i> , 2012 , 9, 1077-80	21.6	62
61	A synthetic biology framework for programming eukaryotic transcription functions. <i>Cell</i> , 2012 , 150, 647	7-5 6.2	239
60	Wisdom of crowds for robust gene network inference. <i>Nature Methods</i> , 2012 , 9, 796-804	21.6	1097
59	Oxidation of the guanine nucleotide pool underlies cell death by bactericidal antibiotics. <i>Science</i> , 2012 , 336, 315-9	33.3	316
58	Antibiotic-induced bacterial cell death exhibits physiological and biochemical hallmarks of apoptosis. <i>Molecular Cell</i> , 2012 , 46, 561-72	17.6	257
57	Signaling-mediated bacterial persister formation. <i>Nature Chemical Biology</i> , 2012 , 8, 431-3	11.7	302
56	Genetic switchboard for synthetic biology applications. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2012 , 109, 5850-5	11.5	133

55	Cellular decision making and biological noise: from microbes to mammals. <i>Cell</i> , 2011 , 144, 910-25	56.2	713
54	Synthetic biology moving into the clinic. <i>Science</i> , 2011 , 333, 1248-52	33.3	300
53	Metabolite-enabled eradication of bacterial persisters by aminoglycosides. <i>Nature</i> , 2011 , 473, 216-20	50.4	599
52	An atlas for Schistosoma mansoni organs and life-cycle stages using cell type-specific markers and confocal microscopy. <i>PLoS Neglected Tropical Diseases</i> , 2011 , 5, e1009	4.8	92
51	Bacterial charity work leads to population-wide resistance. <i>Nature</i> , 2010 , 467, 82-5	50.4	423
50	Synthetic biology: applications come of age. <i>Nature Reviews Genetics</i> , 2010 , 11, 367-79	30.1	900
49	How antibiotics kill bacteria: from targets to networks. <i>Nature Reviews Microbiology</i> , 2010 , 8, 423-35	22.2	1242
48	Tracking, tuning, and terminating microbial physiology using synthetic riboregulators. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2010 , 107, 15898-903	11.5	143
47	Sublethal antibiotic treatment leads to multidrug resistance via radical-induced mutagenesis. <i>Molecular Cell</i> , 2010 , 37, 311-20	17.6	609
46	Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. <i>Cell Stem Cell</i> , 2010 , 7, 618-30	18	2025
45	Diversity-based, model-guided construction of synthetic gene networks with predicted functions. <i>Nature Biotechnology</i> , 2009 , 27, 465-71	44.5	357
44	Next-generation synthetic gene networks. <i>Nature Biotechnology</i> , 2009 , 27, 1139-50	44.5	274
43	Synthetic gene networks that count. <i>Science</i> , 2009 , 324, 1199-202	33.3	449
42	Hydroxyurea induces hydroxyl radical-mediated cell death in Escherichia coli. <i>Molecular Cell</i> , 2009 , 36, 845-60	17.6	140
41	Engineered bacteriophage targeting gene networks as adjuvants for antibiotic therapy. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 4629-34	11.5	378
40	The Immunological Genome Project: networks of gene expression in immune cells. <i>Nature Immunology</i> , 2008 , 9, 1091-4	19.1	1098
39	Mistranslation of membrane proteins and two-component system activation trigger antibiotic-mediated cell death. <i>Cell</i> , 2008 , 135, 679-90	56.2	388
38	Dispersing biofilms with engineered enzymatic bacteriophage. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2007 , 104, 11197-202	11.5	596

37	Gyrase inhibitors induce an oxidative damage cellular death pathway in Escherichia coli. <i>Molecular Systems Biology</i> , 2007 , 3, 91	12.2	327
36	Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles. <i>PLoS Biology</i> , 2007 , 5, e8	9.7	1051
35	A common mechanism of cellular death induced by bactericidal antibiotics. <i>Cell</i> , 2007 , 130, 797-810	56.2	1833
34	Phenotypic consequences of promoter-mediated transcriptional noise. <i>Molecular Cell</i> , 2006 , 24, 853-65	17.6	479
33	RNA synthetic biology. <i>Nature Biotechnology</i> , 2006 , 24, 545-54	44.5	299
32	Chemogenomic profiling on a genome-wide scale using reverse-engineered gene networks. <i>Nature Biotechnology</i> , 2005 , 23, 377-83	44.5	283
31	Stochasticity in gene expression: from theories to phenotypes. <i>Nature Reviews Genetics</i> , 2005 , 6, 451-64	130.1	1738
30	Engineered riboregulators enable post-transcriptional control of gene expression. <i>Nature Biotechnology</i> , 2004 , 22, 841-7	44.5	443
29	Programmable cells: interfacing natural and engineered gene networks. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2004 , 101, 8414-9	11.5	480
28	Noise-enhanced human sensorimotor function. <i>IEEE Engineering in Medicine and Biology Magazine</i> , 2003 , 22, 76-83		119
27	Noise in eukaryotic gene expression. <i>Nature</i> , 2003 , 422, 633-7	50.4	1273
26	Prediction and measurement of an autoregulatory genetic module. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2003 , 100, 7714-9	11.5	367
25	Engineered gene circuits. <i>Nature</i> , 2002 , 420, 224-30	50.4	569
24	Synthetic gene network for entraining and amplifying cellular oscillations. <i>Physical Review Letters</i> , 2002 , 88, 148101	7.4	153
23	Computational studies of gene regulatory networks: in numero molecular biology. <i>Nature Reviews Genetics</i> , 2001 , 2, 268-79	30.1	426
22	Predicting cerebral blood flow response to orthostatic stress from resting dynamics: effects of healthy aging. <i>American Journal of Physiology - Regulatory Integrative and Comparative Physiology</i> , 2001 , 281, R716-22	3.2	30
21	Construction of a genetic toggle switch in Escherichia coli. <i>Nature</i> , 2000 , 403, 339-42	50.4	3103
20	Noise-based switches and amplifiers for gene expression. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2000 , 97, 2075-80	11.5	507

19	Mechanism of stochastic resonance enhancement in neuronal models driven by 1/f noise. <i>Physical Review E</i> , 1999 , 60, 4637-44	2.4	40
18	Synchronization of noisy systems by stochastic signals. <i>Physical Review E</i> , 1999 , 60, 284-92	2.4	68
17	Frequency Control of an Oscillatory Reaction by Reversible Binding of an Autocatalyst. <i>Physical Review Letters</i> , 1999 , 82, 1582-1585	7.4	13
16	Assessing muscle stiffness from quiet stance in Parkinson disease. <i>Muscle and Nerve</i> , 1999 , 22, 635-9	3.4	32
15	Effects of Colored Noise on Stochastic Resonance in Sensory Neurons. <i>Physical Review Letters</i> , 1999 , 82, 2402-2405	7.4	233
14	Real-time experimental control of a system in its chaotic and nonchaotic regimes. <i>Physical Review E</i> , 1997 , 56, R3749-R3752	2.4	18
13	Noise-mediated enhancements and decrements in human tactile sensation. <i>Physical Review E</i> , 1997 , 56, 923-926	2.4	150
12	Stochastic Resonance in Ensembles of Nondynamical Elements: The Role of Internal Noise. <i>Physical Review Letters</i> , 1997 , 79, 4701-4704	7.4	89
11	Dynamic Control of Cardiac Alternans. <i>Physical Review Letters</i> , 1997 , 78, 4518-4521	7.4	157
10	Noise in human muscle spindles. <i>Nature</i> , 1996 , 383, 769-70	50.4	236
9	Noise-enhanced tactile sensation. <i>Nature</i> , 1996 , 383, 770	50.4	338
8	Tuning stochastic resonance. <i>Nature</i> , 1995 , 378, 341-342	50.4	7
7	Upright, correlated random walks: A statistical-biomechanics approach to the human postural control system. <i>Chaos</i> , 1995 , 5, 57-63	3.3	115
6	A group-theoretic approach to rings of coupled biological oscillators 1994 , 71, 95		10
5	Hard-wired central pattern generators for quadrupedal locomotion 1994 , 71, 375		2
4	Using Natural Language Processing to Learn the Grammar of Glycans		4
3			
	SweetOrigins: Extracting Evolutionary Information from Glycans		2

Deep Learning for RNA Synthetic Biology

4