
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/505786/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Survivin as a Radioresistance Factor, and Prognostic and Therapeutic Target for Radiotherapy in Rectal Cancer. Cancer Research, 2005, 65, 4881-4887.	0.9	248
2	CD8+ tumour-infiltrating lymphocytes in relation to HPV status and clinical outcome in patients with head and neck cancer after postoperative chemoradiotherapy: A multicentre study of the German cancer consortium radiation oncology group (DKTK-ROG). International Journal of Cancer, 2016, 138, 171-181.	5.1	184
3	Spontaneous and radiation-induced apoptosis in colorectal carcinoma cells with different intrinsic radiosensitivities: Survivin as a radioresistance factor. International Journal of Radiation Oncology Biology Physics, 2003, 55, 1341-1347.	0.8	146
4	Radiation sensitivity of human and murine peripheral blood lymphocytes, stem and progenitor cells. Biochimica Et Biophysica Acta: Reviews on Cancer, 2014, 1846, 121-129.	7.4	137
5	Apoptosis as a cellular predictor for histopathologic response to neoadjuvant radiochemotherapy in patients with rectal cancer. International Journal of Radiation Oncology Biology Physics, 2002, 52, 294-303.	0.8	119
6	Inflammatory fibroblasts mediate resistance to neoadjuvant therapy in rectal cancer. Cancer Cell, 2022, 40, 168-184.e13.	16.8	117
7	Contribution of the immune system to bystander and non-targeted effects of ionizing radiation. Cancer Letters, 2015, 356, 105-113.	7.2	113
8	Modulation of inflammation by low and high doses of ionizing radiation: Implications for benign and malign diseases. Cancer Letters, 2015, 368, 230-237.	7.2	108
9	Stromal SPARC expression and patient survival after chemoradiation for non-resectable pancreatic adenocarcinoma. Cancer Biology and Therapy, 2008, 7, 1806-1815.	3.4	98
10	Immunomodulatory Properties and Molecular Effects in Inflammatory Diseases of Low-Dose X-Irradiation. Frontiers in Oncology, 2012, 2, 120.	2.8	97
11	Survivin Antisense Oligonucleotides Effectively Radiosensitize Colorectal Cancer Cells in Both Tissue Culture and Murine Xenograft Models. International Journal of Radiation Oncology Biology Physics, 2008, 71, 247-255.	0.8	96
12	High Survivin Expression is Associated with Reduced Apoptosis in Rectal Cancer and May Predict Disease-Free Survival after Preoperative Radiochemotherapy and Surgical Resection. Strahlentherapie Und Onkologie, 2002, 178, 426-435.	2.0	94
13	The PD-1/PD-L1 axis and human papilloma virus in patients with head and neck cancer after adjuvant chemoradiotherapy: A multicentre study of the German Cancer Consortium Radiation Oncology Group (DKTK-ROG). International Journal of Cancer, 2017, 141, 594-603.	5.1	91
14	Low dose ionizing radiation effects on the immune system. Environment International, 2021, 149, 106212.	10.0	89
15	Human papilloma virus load and PD-1/PD-L1, CD8 ⁺ and FOXP3 in anal cancer patients treated with chemoradiotherapy: Rationale for immunotherapy. Oncolmmunology, 2017, 6, e1288331.	4.6	79
16	Human papillomavirus DNA load and p16 ^{INK4a} expression predict for local control in patients with anal squamous cell carcinoma treated with chemoradiotherapy. International Journal of Cancer, 2015, 136, 278-288.	5.1	75
17	The Role of Survivin for Radiation Therapy. Strahlentherapie Und Onkologie, 2007, 183, 593-599.	2.0	74
18	Survivin inhibition and DNA double-strand break repair: A molecular mechanism to overcome radioresistance in glioblastoma. Radiotherapy and Oncology, 2011, 101, 51-58.	0.6	70

#	Article	IF	CITATIONS
19	Low dose ionising radiation leads to a NF-κB dependent decreased secretion of active IL-1β by activated macrophages with a discontinuous dose-dependency. International Journal of Radiation Biology, 2012, 88, 727-734.	1.8	70
20	A Two-Phase Expansion Protocol Combining Interleukin (IL)-15 and IL-21 Improves Natural Killer Cell Proliferation and Cytotoxicity against Rhabdomyosarcoma. Frontiers in Immunology, 2017, 8, 676.	4.8	70
21	NF-κB Is Required for Smac Mimetic-Mediated Sensitization of Glioblastoma Cells for γ-Irradiation–Induced Apoptosis. Molecular Cancer Therapeutics, 2011, 10, 1867-1875.	4.1	63
22	Kill and spread the word: stimulation of antitumor immune responses in the context of radiotherapy. Immunotherapy, 2014, 6, 597-610.	2.0	63
23	Tumor-infiltrating lymphocytes favor the response to chemoradiotherapy of head and neck cancer. Oncolmmunology, 2014, 3, e27403.	4.6	61
24	The Induction of TGF-β1 and NF-κB Parallels a Biphasic Time Course of Leukocyte/Endothelial Cell Adhesion Following Low-Dose X-Irradiation. Strahlentherapie Und Onkologie, 2004, 180, 194-200.	2.0	60
25	Polo-Like Kinase 1 as Predictive Marker and Therapeutic Target for Radiotherapy in Rectal Cancer. American Journal of Pathology, 2010, 177, 918-929.	3.8	58
26	Interference with the HSF1/HSP70/BAG3 Pathway Primes Glioma Cells to Matrix Detachment and BH3 Mimetic–Induced Apoptosis. Molecular Cancer Therapeutics, 2017, 16, 156-168.	4.1	57
27	Study of the anti-inflammatory effects of low-dose radiation. Strahlentherapie Und Onkologie, 2015, 191, 742-749.	2.0	55
28	The Anti-Inflammatory Effect of Low-Dose Radiation Therapy Involves a Diminished CCL20 Chemokine Expression and Granulocyte/Endothelial Cell Adhesion. Strahlentherapie Und Onkologie, 2008, 184, 41-47.	2.0	54
29	Radiation-Induced Survivin Nuclear Accumulation is Linked to DNA Damage Repair. International Journal of Radiation Oncology Biology Physics, 2010, 77, 226-234.	0.8	53
30	The Tumor Gene Survivin Is Highly Expressed in Adult Renal Tubular Cells. American Journal of Pathology, 2007, 171, 1483-1498.	3.8	52
31	Heat shock protein 70 and tumorâ€infiltrating NK cells as prognostic indicators for patients with squamous cell carcinoma of the head and neck after radiochemotherapy: A multicentre retrospective study of the German Cancer Consortium Radiation Oncology Group (DKTKâ€ROG). International Journal of Cancer. 2018, 142, 1911-1925.	5.1	50
32	Targeting by cmHsp70.1-antibody coated and survivin miRNA plasmid loaded nanoparticles to radiosensitize glioblastoma cells. Journal of Controlled Release, 2013, 172, 201-206.	9.9	49
33	A radiosensitizing effect of artesunate in glioblastoma cells is associated with a diminished expression of the inhibitor of apoptosis protein survivin. Radiotherapy and Oncology, 2012, 103, 394-401.	0.6	46
34	The role of recent nanotechnology in enhancing the efficacy of radiation therapy. Biochimica Et Biophysica Acta: Reviews on Cancer, 2015, 1856, 130-143.	7.4	46
35	Discontinuous induction of X-linked inhibitor of apoptosis in EA.hy.926 endothelial cells is linked to NF-l²B activation and mediates the anti-inflammatory properties of low-dose ionising-radiation. Radiotherapy and Oncology, 2010, 97, 346-351.	0.6	44
36	Radon Exposure—Therapeutic Effect and Cancer Risk. International Journal of Molecular Sciences, 2021, 22, 316.	4.1	43

#	Article	IF	CITATIONS
37	Effects of YM155 on survivin levels and viability in neuroblastoma cells with acquired drug resistance. Cell Death and Disease, 2016, 7, e2410-e2410.	6.3	40
38	Combined treatment of human colorectal tumor cell lines with chemotherapeutic agents and ionizing irradiation can <i>in vitro</i> induce tumor cell death forms with immunogenic potential. Journal of Immunotoxicology, 2012, 9, 301-313.	1.7	39
39	Low-dose radiation therapy for COVID-19 pneumopathy: what is the evidence?. Strahlentherapie Und Onkologie, 2020, 196, 679-682.	2.0	39
40	XIAP as a Radioresistance Factor and Prognostic Marker for Radiotherapy in Human Rectal Adenocarcinoma. American Journal of Pathology, 2012, 181, 1271-1278.	3.8	38
41	Failure of Downregulation of Survivin Following Neoadjuvant Radiochemotherapy in Rectal Cancer Is Associated with Distant Metastases and Shortened Survival. Clinical Cancer Research, 2011, 17, 1623-1631.	7.0	37
42	Anal squamous cell carcinoma – State of the art management and future perspectives. Cancer Treatment Reviews, 2018, 65, 11-21.	7.7	37
43	Ligand stimulation of CD95 induces activation of Plk3 followed by phosphorylation of caspase-8. Cell Research, 2016, 26, 914-934.	12.0	35
44	DEGRO practical guidelines for radiotherapy of non-malignant disorders. Strahlentherapie Und Onkologie, 2015, 191, 701-709.	2.0	32
45	Cellular and Molecular Changes of Brain Metastases-Associated Myeloid Cells during Disease Progression and Therapeutic Response. IScience, 2020, 23, 101178.	4.1	32
46	Silencing of the mRNA-binding protein HuR increases the sensitivity of colorectal cancer cells to ionizing radiation through upregulation of caspase-2. Cancer Letters, 2017, 393, 103-112.	7.2	31
47	Double targeting of Survivin and XIAP radiosensitizes 3D grown human colorectal tumor cells and decreases migration. Radiotherapy and Oncology, 2013, 108, 32-39.	0.6	29
48	Peripheral Leukocytosis Is Inversely Correlated with Intratumoral CD8+ T-Cell Infiltration and Associated with Worse Outcome after Chemoradiotherapy in Anal Cancer. Frontiers in Immunology, 2017, 8, 1225.	4.8	29
49	Arsenic Trioxide and (â^')-Gossypol Synergistically Target Clioma Stem-Like Cells via Inhibition of Hedgehog and Notch Signaling. Cancers, 2019, 11, 350.	3.7	29
50	NMDA Receptor-Mediated Signaling Pathways Enhance Radiation Resistance, Survival and Migration in Glioblastoma Cells—A Potential Target for Adjuvant Radiotherapy. Cancers, 2019, 11, 503.	3.7	28
51	The SMAC mimetic BV6 sensitizes colorectal cancer cells to ionizing radiation by interfering with DNA repair processes and enhancing apoptosis. Radiation Oncology, 2015, 10, 198.	2.7	27
52	Blocking Mitotic Exit of Ovarian Cancer Cells by Pharmaceutical Inhibition of the Anaphase-Promoting Complex Reduces Chromosomal Instability. Neoplasia, 2019, 21, 363-375.	5.3	27
53	Activator protein 1 shows a biphasic induction and transcriptional activity after low dose X-irradiation in EA.hy.926 endothelial cells. Autoimmunity, 2009, 42, 343-345.	2.6	26
54	Reduced secretion of the inflammatory cytokine IL-1β by stimulated peritoneal macrophages of radiosensitive Balb/c mice after exposure to 0.5 or 0.7Gy of ionizing radiation. Autoimmunity, 2013, 46, 323-328.	2.6	26

#	Article	IF	CITATIONS
55	Basics of Radiation Biology When Treating Hyperproliferative Benign Diseases. Frontiers in Immunology, 2017, 8, 519.	4.8	26
56	Re-irradiation with cetuximab or cisplatin-based chemotherapy for recurrent squamous cell carcinoma of the head and neck. Strahlentherapie Und Onkologie, 2015, 191, 656-664.	2.0	25
57	Ionizing Radiation Induces Morphological Changes and Immunological Modulation of Jurkat Cells. Frontiers in Immunology, 2018, 9, 922.	4.8	25
58	Radiation Sensitization of Basal Cell and Head and Neck Squamous Cell Carcinoma by the Hedgehog Pathway Inhibitor Vismodegib. International Journal of Molecular Sciences, 2018, 19, 2485.	4.1	25
59	Targeted Therapies and Immune-Checkpoint Inhibition in Head and Neck Squamous Cell Carcinoma: Where Do We Stand Today and Where to Go?. Cancers, 2019, 11, 472.	3.7	24
60	The immune microenvironment and HPV in anal cancer: Rationale to complement chemoradiation with immunotherapy. Biochimica Et Biophysica Acta: Reviews on Cancer, 2017, 1868, 221-230.	7.4	23
61	Survivin-miRNA-loaded nanoparticles as auxiliary tools for radiation therapy: preparation, characterisation, drug release, cytotoxicity and therapeutic effect on colorectal cancer cells. Journal of Microencapsulation, 2012, 29, 685-694.	2.8	21
62	A non-linear detection of phospho-histone H2AX in EA.hy926 endothelial cells following low-dose X-irradiation is modulated by reactive oxygen species. Radiation Oncology, 2014, 9, 80.	2.7	21
63	C-Reactive Protein-to-Albumin Ratio as Prognostic Marker for Anal Squamous Cell Carcinoma Treated With Chemoradiotherapy. Frontiers in Oncology, 2019, 9, 1200.	2.8	19
64	Tumor Suppressor Protein p53 and Inhibitor of Apoptosis Proteins in Colorectal Cancer—A Promising Signaling Network for Therapeutic Interventions. Cancers, 2021, 13, 624.	3.7	17
65	Prognostic impact of CD8-positive tumour-infiltrating lymphocytes and PD-L1 expression in salivary gland cancer. Oral Oncology, 2020, 111, 104931.	1.5	16
66	Caveolin-1 as a Prognostic Marker for Local Control After Preoperative Chemoradiation Therapy in Rectal Cancer. International Journal of Radiation Oncology Biology Physics, 2009, 73, 846-852.	0.8	15
67	The Prognostic Relevance of the Proliferation Markers Ki-67 and Plk1 in Early-Stage Ovarian Cancer Patients With Serous, Low-Grade Carcinoma Based on mRNA and Protein Expression. Frontiers in Oncology, 2020, 10, 558932.	2.8	15
68	Measuring Leukocyte Adhesion to (Primary) Endothelial Cells after Photon and Charged Particle Exposure with a Dedicated Laminar Flow Chamber. Frontiers in Immunology, 2017, 8, 627.	4.8	14
69	Evaluating Magnetic Resonance Spectroscopy as a Tool for Monitoring Therapeutic Response of Whole Brain Radiotherapy in a Mouse Model for Breast-to-Brain Metastasis. Frontiers in Oncology, 2019, 9, 1324.	2.8	13
70	lonizing radiation reduces the capacity of activated macrophages to induce T-cell proliferation, but does not trigger dendritic cell-mediated non-targeted effects. International Journal of Radiation Biology, 2019, 95, 33-43.	1.8	12
71	Modulation of radiation sensitivity and antitumor immunity by viral pathogenic factors: Implications for radio-immunotherapy. Biochimica Et Biophysica Acta: Reviews on Cancer, 2019, 1871, 126-137.	7.4	12
72	Polo-like kinase 3 and phosphoT273 caspase-8 are associated with improved local tumor control and survival in patients with anal carcinoma treated with concomitant chemoradiotherapy. Oncotarget, 2016, 7, 53339-53349.	1.8	12

#	Article	IF	CITATIONS
73	Molecular Markers to Predict Prognosis and Treatment Response in Uterine Cervical Cancer. Cancers, 2021, 13, 5748.	3.7	11
74	Advances in nanotechnology-based platforms for survivin-targeted drug discovery. Expert Opinion on Drug Discovery, 2022, 17, 733-754.	5.0	10
75	Comparison of the composition of lymphocyte subpopulations in non-relapse and relapse patients with squamous cell carcinoma of the head and neck before, during radiochemotherapy and in the follow-up period: a multicenter prospective study of the German Cancer Consortium Radiation Oncology Group (DKTK-ROG), Radiation Oncology, 2021, 16, 141.	2.7	9
76	Epidermal Growth Factor Receptor Expression As Prognostic Marker in Patients With Anal Carcinoma Treated With Concurrent Chemoradiation Therapy. International Journal of Radiation Oncology Biology Physics, 2013, 86, 901-907.	0.8	8
77	A Spatial and Functional Interaction of a Heterotetramer Survivin–DNA-PKcs Complex in DNA Damage Response. Cancer Research, 2021, 81, 2304-2317.	0.9	8
78	ROS- and Radiation Source-Dependent Modulation of Leukocyte Adhesion to Primary Microvascular Endothelial Cells. Cells, 2022, 11, 72.	4.1	8
79	Frontiers Research Topic: Radiation-Induced Effects and the Immune System. Frontiers in Oncology, 2013, 3, 55.	2.8	7
80	Combined p16 and p53 expression in cervical cancer of unknown primary and other prognostic parameters. Strahlentherapie Und Onkologie, 2017, 193, 305-314.	2.0	7
81	Prognostic impact of RITA expression in patients with anal squamous cell carcinoma treated with chemoradiotherapy. Radiotherapy and Oncology, 2018, 126, 214-221.	0.6	7
82	Testing of the Survivin Suppressant YM155 in a Large Panel of Drug-Resistant Neuroblastoma Cell Lines. Cancers, 2020, 12, 577.	3.7	7
83	Prognostic value of high-risk human papillomavirus DNA and p16INK4a immunohistochemistry in patients with anal cancer: An individual patient data meta-analysis. European Journal of Cancer, 2021, 157, 165-178.	2.8	7
84	ACO/ARO/AIO-21 - Capecitabine-based chemoradiotherapy in combination with the IL-1 receptor antagonist anakinra for rectal cancer Patients: A phase I trial of the German rectal cancer study group. Clinical and Translational Radiation Oncology, 2022, 34, 99-106.	1.7	7
85	Re-irradiation with concurrent and maintenance nivolumab in locally recurrent and inoperable squamous cell carcinoma of the head and neck: A single-center cohort study. Clinical and Translational Radiation Oncology, 2021, 28, 71-78.	1.7	6
86	Association of Polo-Like Kinase 3 and PhosphoT273 Caspase 8 Levels With Disease-Related Outcomes Among Cervical Squamous Cell Carcinoma Patients Treated With Chemoradiation and Brachytherapy. Frontiers in Oncology, 2019, 9, 742.	2.8	5
87	YM155-Adapted Cancer Cell Lines Reveal Drug-Induced Heterogeneity and Enable the Identification of Biomarker Candidates for the Acquired Resistance Setting. Cancers, 2020, 12, 1080.	3.7	5
88	Fractionation-Dependent Radiosensitization by Molecular Targeting of Nek1. Cells, 2020, 9, 1235.	4.1	5
89	Editorial: Radioimmunotherapy—Translational Opportunities and Challenges. Frontiers in Oncology, 2020, 10, 190.	2.8	4
90	Patterns of care, toxicity and outcome in the treatment of salivary gland carcinomas: long-term experience from a tertiary cancer center. European Archives of Oto-Rhino-Laryngology, 2021, 278, 4411-4421.	1.6	4

#	Article	IF	CITATIONS
91	Acute organ toxicity correlates with better clinical outcome after chemoradiotherapy in patients with anal carcinoma. Radiotherapy and Oncology, 2020, 149, 168-173.	0.6	4
92	Neoadjuvant Chemoradiotherapy for Oral Cavity Cancer: Predictive Factors for Response and Interim Analysis of the Prospective INVERT-Trial. Frontiers in Oncology, 2022, 12, 817692.	2.8	4
93	Radon Improves Clinical Response in an Animal Model of Rheumatoid Arthritis Accompanied by Increased Numbers of Peripheral Blood B Cells and Interleukin-5 Concentration. Cells, 2022, 11, 689.	4.1	3
94	X-ray irradiation triggers immune response in human T-lymphocytes via store-operated Ca2+ entry and NFAT activation. Journal of General Physiology, 2022, 154, .	1.9	3
95	Anti-epidermal growth factor receptor immunotherapy in combination with cisplatin chemoradiation for patients with advanced head and neck carcinoma—biological and clinical limitations of the triple treatment. Translational Cancer Research, 2016, 5, 199-202.	1.0	2
96	BRAT1 Impairs DNA Damage Repair in Glioblastoma Cell Lines. Medical Sciences Forum, 2021, 3, 3.	0.5	1
97	OTME-6. Deep sequencing reveals heterogeneity of brain metastasis-associated macrophages and microglia and uncovers their cell type-specific functions within the tumor microenvironment. Neuro-Oncology Advances, 2021, 3, ii14-ii14.	0.7	1
98	Introduction to Radiation Biology When Treating Hyperproliferative Benign Diseases. , 2017, , 333-339.		0
99	Radiobiological Principles of Radiotherapy for Benign Diseases. , 2020, , 1-15.		0