## Stefan Ropele

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5057424/publications.pdf Version: 2024-02-01



STEEAN PODELE

| #  | Article                                                                                                                                                                                                | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Quantitative susceptibility mapping (QSM) as a means to measure brain iron? A post mortem validation study. NeuroImage, 2012, 62, 1593-1599.                                                           | 2.1 | 615       |
| 2  | Quantitative MR Imaging of Brain Iron: A Postmortem Validation Study. Radiology, 2010, 257, 455-462.                                                                                                   | 3.6 | 429       |
| 3  | Serum neurofilament light levels in normal aging and their association with morphologic brain changes. Nature Communications, 2020, 11, 812.                                                           | 5.8 | 316       |
| 4  | Progression of cerebral white matter lesions: 6-year results of the Austrian Stroke Prevention Study.<br>Lancet, The, 2003, 361, 2046-2048.                                                            | 6.3 | 275       |
| 5  | A Novel Imaging Marker for Small Vessel Disease Based on Skeletonization of White Matter Tracts and Diffusion Histograms. Annals of Neurology, 2016, 80, 581-592.                                      | 2.8 | 250       |
| 6  | Novel genetic loci associated with hippocampal volume. Nature Communications, 2017, 8, 13624.                                                                                                          | 5.8 | 250       |
| 7  | Safety and immunogenicity of the tau vaccine AADvac1 in patients with Alzheimer's disease: a<br>randomised, double-blind, placebo-controlled, phase 1 trial. Lancet Neurology, The, 2017, 16, 123-134. | 4.9 | 233       |
| 8  | Quantitative Susceptibility Mapping in Multiple Sclerosis. Radiology, 2013, 267, 551-559.                                                                                                              | 3.6 | 216       |
| 9  | Differential developmental trajectories of magnetic susceptibility in human brain gray and white matter over the lifespan. Human Brain Mapping, 2014, 35, 2698-2713.                                   | 1.9 | 208       |
| 10 | Quantitative Susceptibility Mapping in Parkinson's Disease. PLoS ONE, 2016, 11, e0162460.                                                                                                              | 1.1 | 184       |
| 11 | Fast quantitative susceptibility mapping using 3D EPI and total generalized variation. NeuroImage, 2015, 111, 622-630.                                                                                 | 2.1 | 157       |
| 12 | Serum neurofilament light is sensitive to active cerebral small vessel disease. Neurology, 2017, 89, 2108-2114.                                                                                        | 1.5 | 139       |
| 13 | Quantifying bloodâ€brain barrier leakage in small vessel disease: Review and consensus<br>recommendations. Alzheimer's and Dementia, 2019, 15, 840-858.                                                | 0.4 | 134       |
| 14 | R2* mapping for brain iron: associations with cognition in normal aging. Neurobiology of Aging, 2015, 36, 925-932.                                                                                     | 1.5 | 122       |
| 15 | Strategic white matter tracts for processing speed deficits in age-related small vessel disease.<br>Neurology, 2014, 82, 1946-1950.                                                                    | 1.5 | 116       |
| 16 | Susceptibility induced gray–white matter MRI contrast in the human brain. NeuroImage, 2012, 59, 1413-1419.                                                                                             | 2.1 | 113       |
| 17 | Nonconventional MRI and microstructural cerebral changes in multiple sclerosis. Nature Reviews<br>Neurology, 2015, 11, 676-686.                                                                        | 4.9 | 109       |
| 18 | Diffusion-weighted Imaging with Navigated Interleaved Echo-planar Imaging and a Conventional<br>Gradient System. Radiology, 1999, 211, 799-806.                                                        | 3.6 | 94        |

| #  | Article                                                                                                                                                                                                    | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Assessment of trace elements in human brain using inductively coupled plasma mass spectrometry.<br>Journal of Trace Elements in Medicine and Biology, 2014, 28, 1-7.                                       | 1.5 | 88        |
| 20 | FUNDAMANT: an interventional 72-week phase 1 follow-up study of AADvac1, an active immunotherapy<br>against tau protein pathology in Alzheimer's disease. Alzheimer's Research and Therapy, 2018, 10, 108. | 3.0 | 87        |
| 21 | Effects of formalin fixation and temperature on MR relaxation times in the human brain. NMR in Biomedicine, 2016, 29, 458-465.                                                                             | 1.6 | 86        |
| 22 | MRI assessment of iron deposition in multiple sclerosis. Journal of Magnetic Resonance Imaging, 2011, 34, 13-21.                                                                                           | 1.9 | 84        |
| 23 | MRI for Iron Mapping in Alzheimer's Disease. Neurodegenerative Diseases, 2014, 13, 189-191.                                                                                                                | 0.8 | 84        |
| 24 | Intercenter differences in diffusion tensor MRI acquisition. Journal of Magnetic Resonance Imaging, 2010, 31, 1458-1468.                                                                                   | 1.9 | 81        |
| 25 | Quantitative magnetic resonance imaging towards clinical application in multiple sclerosis. Brain, 2021, 144, 1296-1311.                                                                                   | 3.7 | 81        |
| 26 | Reproducibility and variability of quantitative magnetic resonance imaging markers in cerebral small vessel disease. Journal of Cerebral Blood Flow and Metabolism, 2016, 36, 1319-1337.                   | 2.4 | 80        |
| 27 | Cross-sectional and Longitudinal Assessment of Brain Iron Level in Alzheimer Disease Using 3-T MRI.<br>Radiology, 2020, 296, 619-626.                                                                      | 3.6 | 71        |
| 28 | Harmonizing brain magnetic resonance imaging methods for vascular contributions to<br>neurodegeneration. Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring, 2019, 11,<br>191-204.     | 1.2 | 65        |
| 29 | ADAMANT: a placebo-controlled randomized phase 2 study of AADvac1, an active immunotherapy<br>against pathological tau in Alzheimer's disease. Nature Aging, 2021, 1, 521-534.                             | 5.3 | 64        |
| 30 | Dynamics of brain iron levels in multiple sclerosis. Neurology, 2015, 84, 2396-2402.                                                                                                                       | 1.5 | 61        |
| 31 | Method for quantitative imaging of the macromolecular1H fraction in tissues. Magnetic Resonance in Medicine, 2003, 49, 864-871.                                                                            | 1.9 | 59        |
| 32 | Determinants of iron accumulation in the normal aging brain. Neurobiology of Aging, 2016, 43, 149-155.                                                                                                     | 1.5 | 59        |
| 33 | Assessment and correction ofB1-induced errors in magnetization transfer ratio measurements.<br>Magnetic Resonance in Medicine, 2005, 53, 134-140.                                                          | 1.9 | 57        |
| 34 | Outcome after acute ischemic stroke is linked to sex-specific lesion patterns. Nature Communications, 2021, 12, 3289.                                                                                      | 5.8 | 50        |
| 35 | Magnetization Transfer MR Imaging in Multiple Sclerosis. Neuroimaging Clinics of North America, 2009, 19, 27-36.                                                                                           | O.5 | 47        |
| 36 | Determinants of iron accumulation in deep grey matter of multiple sclerosis patients. Multiple<br>Sclerosis Journal, 2014, 20, 1692-1698.                                                                  | 1.4 | 47        |

| #  | Article                                                                                                                                                                                                  | IF        | CITATIONS            |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|----------------------|
| 37 | Nanoparticulate flurbiprofen reduces amyloid-β42 generation in an in vitro blood–brain barrier model.<br>Alzheimer's Research and Therapy, 2013, 5, 51.                                                  | 3.0       | 45                   |
| 38 | Loss of Venous Integrity in Cerebral Small Vessel Disease. Stroke, 2014, 45, 2124-2126.                                                                                                                  | 1.0       | 43                   |
| 39 | Brain Activity Changes in Cognitive Networks in Relapsing-Remitting Multiple Sclerosis – Insights<br>from a Longitudinal fMRI Study. PLoS ONE, 2014, 9, e93715.                                          | 1.1       | 42                   |
| 40 | Association between increased magnetic susceptibility of deep gray matter nuclei and decreased motor function in healthy adults. NeuroImage, 2015, 105, 45-52.                                           | 2.1       | 41                   |
| 41 | Cortical Superficial Siderosis in Different Types of Cerebral Small Vessel Disease. Stroke, 2017, 48, 1404-1407.                                                                                         | 1.0       | 40                   |
| 42 | Lifespan normative data on rates of brain volume changes. Neurobiology of Aging, 2019, 81, 30-37.                                                                                                        | 1.5       | 40                   |
| 43 | Factors influencing serum neurofilament light chain levels in normal aging. Aging, 2021, 13, 25729-25738.                                                                                                | 1.4       | 38                   |
| 44 | Temperatureâ€induced changes of magnetic resonance relaxation times in the human brain: A<br>postmortem study. Magnetic Resonance in Medicine, 2014, 71, 1575-1580.                                      | 1.9       | 36                   |
| 45 | Magnetization Transfer Ratio Relates to Cognitive Impairment in Normal Elderly. Frontiers in Aging<br>Neuroscience, 2014, 6, 263.                                                                        | 1.7       | 34                   |
| 46 | Prognostic value of free light chains lambda and kappa in early multiple sclerosis. Multiple Sclerosis<br>Journal, 2017, 23, 1496-1505.                                                                  | 1.4       | 34                   |
| 47 | Quantitation of brain tissue changes associated with white matter hyperintensities by<br>diffusionâ€weighted and magnetization transfer imaging: The LADIS (leukoaraiosis and disability in the) Tj ETQq | 1 1109784 | 31 <b>4₃</b> gBT /O∨ |
| 48 | Brain Magnetic Resonance Imaging Findings Fail to Suspect Fabry Disease in Young Patients With an<br>Acute Cerebrovascular Event. Stroke, 2015, 46, 1548-1553.                                           | 1.0       | 33                   |
| 49 | Grey-matter network disintegration as predictor of cognitive and motor function with aging. Brain<br>Structure and Function, 2018, 223, 2475-2487.                                                       | 1.2       | 33                   |
| 50 | The role of iron and myelin in orientation dependent R <sub>2</sub> <sup>*</sup> of white matter.<br>NMR in Biomedicine, 2019, 32, e4092.                                                                | 1.6       | 32                   |
| 51 | Periventricular lesions correlate with cortical thinning in multiple sclerosis. Annals of Neurology, 2015, 78, 530-539.                                                                                  | 2.8       | 29                   |
| 52 | White Matter Edema at the Early Stage of Cerebral Autosomal-Dominant Arteriopathy With Subcortical Infarcts and Leukoencephalopathy. Stroke, 2015, 46, 258-261.                                          | 1.0       | 29                   |
| 53 | Correlates of Executive Functions in Multiple Sclerosis Based on Structural and Functional MR<br>Imaging: Insights from a Multicenter Study. Radiology, 2016, 280, 869-879.                              | 3.6       | 29                   |
| 54 | Iron quantification with susceptibility. NMR in Biomedicine, 2017, 30, e3534.                                                                                                                            | 1.6       | 29                   |

| #  | Article                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Predictive value of different conventional and non-conventional MRI-parameters for specific domains of cognitive function in multiple sclerosis. NeuroImage: Clinical, 2015, 7, 715-720.                                           | 1.4 | 27        |
| 56 | Performance of five research-domain automated WM lesion segmentation methods in a multi-center MS study. Neurolmage, 2017, 163, 106-114.                                                                                           | 2.1 | 27        |
| 57 | Longitudinal MRI dynamics of recent small subcortical infarcts and possible predictors. Journal of<br>Cerebral Blood Flow and Metabolism, 2019, 39, 1669-1677.                                                                     | 2.4 | 27        |
| 58 | The Impact of Sex and Vascular Risk Factors on Brain Tissue Changes with Aging: Magnetization<br>Transfer Imaging Results of the Austrian Stroke Prevention Study. American Journal of<br>Neuroradiology, 2010, 31, 1297-1301.     | 1.2 | 26        |
| 59 | The influence of iron oxidation state on quantitative MRI parameters in post mortem human brain.<br>NeuroImage, 2020, 220, 117080.                                                                                                 | 2.1 | 25        |
| 60 | Repetitive Long-Term Hyperbaric Oxygen Treatment (HBOT) Administered after Experimental Traumatic<br>Brain Injury in Rats Induces Significant Remyelination and a Recovery of Sensorimotor Function. PLoS<br>ONE, 2014, 9, e97750. | 1.1 | 24        |
| 61 | Iron mapping using the temperature dependency of the magnetic susceptibility. Magnetic Resonance in<br>Medicine, 2015, 73, 1282-1288.                                                                                              | 1.9 | 24        |
| 62 | Early Progressive Changes in White Matter Integrity Are Associated with Stroke Recovery.<br>Translational Stroke Research, 2020, 11, 1264-1272.                                                                                    | 2.3 | 24        |
| 63 | In Vivo High-Resolution 7 Tesla MRI Shows Early and Diffuse Cortical Alterations in CADASIL. PLoS ONE, 2014, 9, e106311.                                                                                                           | 1.1 | 23        |
| 64 | Widespread cortical demyelination of both hemispheres can be induced by injection of<br>pro-inflammatory cytokines via an implanted catheter in the cortex of MOG-immunized rats.<br>Experimental Neurology, 2017, 294, 32-44.     | 2.0 | 23        |
| 65 | Magnetization Transfer Imaging for in vivo Detection of Microstructural Tissue Changes in Aging and<br>Dementia: A Short Literature Review. Journal of Alzheimer's Disease, 2014, 42, S229-S237.                                   | 1.2 | 22        |
| 66 | Different Types of White Matter Hyperintensities in CADASIL. Frontiers in Neurology, 2018, 9, 526.                                                                                                                                 | 1.1 | 21        |
| 67 | Investigation of Deep-Learning-Driven Identification of Multiple Sclerosis Patients Based on<br>Susceptibility-Weighted Images Using Relevance Analysis. Frontiers in Neuroscience, 2020, 14, 609468.                              | 1.4 | 21        |
| 68 | Iron Mapping in Multiple Sclerosis. Neuroimaging Clinics of North America, 2017, 27, 335-342.                                                                                                                                      | 0.5 | 21        |
| 69 | Effects of concentration and vendor specific composition of formalin on postmortem MRI of the human brain. Magnetic Resonance in Medicine, 2018, 79, 1111-1115.                                                                    | 1.9 | 20        |
| 70 | Manual and automated tissue segmentation confirm the impact of thalamus atrophy on cognition in multiple sclerosis: A multicenter study. NeuroImage: Clinical, 2021, 29, 102549.                                                   | 1.4 | 20        |
| 71 | Disability in multiple sclerosis is related to thalamic connectivity and cortical network atrophy.<br>Multiple Sclerosis Journal, 2022, 28, 61-70.                                                                                 | 1.4 | 20        |
| 72 | Contactin-1 and contactin-2 in cerebrospinal fluid as potential biomarkers for axonal domain dysfunction in multiple sclerosis. Multiple Sclerosis Journal - Experimental, Translational and Clinical, 2018, 4, 205521731881953.   | 0.5 | 19        |

| #  | Article                                                                                                                                                                                                                           | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Nigral iron deposition in common tremor disorders. Movement Disorders, 2019, 34, 129-132.                                                                                                                                         | 2.2 | 18        |
| 74 | Multicenter mapping in the healthy brain. Magnetic Resonance in Medicine, 2014, 71, 1103-1107.                                                                                                                                    | 1.9 | 17        |
| 75 | No evidence for increased brain iron deposition in patients with ischemic white matter disease.<br>Neurobiology of Aging, 2016, 45, 61-63.                                                                                        | 1.5 | 17        |
| 76 | Optimization of ultrastructural preservation of human brain for transmission electron microscopy after long post-mortem intervals. Acta Neuropathologica Communications, 2019, 7, 144.                                            | 2.4 | 17        |
| 77 | Cerebral White Matter Lesions and Affective Episodes Correlate in Male Individuals with Bipolar<br>Disorder. PLoS ONE, 2015, 10, e0135313.                                                                                        | 1.1 | 17        |
| 78 | Estimation of magnetization transfer rates from PACE experiments with pulsed RF saturation. Journal of Magnetic Resonance Imaging, 2000, 12, 749-756.                                                                             | 1.9 | 16        |
| 79 | Superâ€resolution MRI using microscopic spatial modulation of magnetization. Magnetic Resonance in<br>Medicine, 2010, 64, 1671-1675.                                                                                              | 1.9 | 16        |
| 80 | Morphological MRI Characteristics of Recent Small Subcortical Infarcts. International Journal of Stroke, 2015, 10, 1037-1043.                                                                                                     | 2.9 | 16        |
| 81 | The impact of vascular risk factors on brain volume and lesion load in patients with early multiple sclerosis Journal, 2019, 25, 48-54.                                                                                           | 1.4 | 16        |
| 82 | Investigating the origin and evolution of cerebral small vessel disease: The RUN DMC – InTENse study.<br>European Stroke Journal, 2018, 3, 369-378.                                                                               | 2.7 | 14        |
| 83 | Reduced accuracy of MRI deep grey matter segmentation in multiple sclerosis: an evaluation of four automated methods against manual reference segmentations in a multi-center cohort. Journal of Neurology, 2020, 267, 3541-3554. | 1.8 | 14        |
| 84 | Relaxation time mapping in multiple sclerosis. Expert Review of Neurotherapeutics, 2011, 11, 441-450.                                                                                                                             | 1.4 | 12        |
| 85 | Total gray matter volume is reduced in individuals with bipolar disorder currently treated with atypical antipsychotics. Journal of Affective Disorders, 2020, 260, 722-727.                                                      | 2.0 | 12        |
| 86 | MRI Radiomic Signature of White Matter Hyperintensities Is Associated With Clinical Phenotypes.<br>Frontiers in Neuroscience, 2021, 15, 691244.                                                                                   | 1.4 | 12        |
| 87 | Multimodal assessment of white matter tracts in amyotrophic lateral sclerosis. PLoS ONE, 2017, 12, e0178371.                                                                                                                      | 1.1 | 12        |
| 88 | Fast multislice T1 and T1sat imaging using a phase acquisition of composite echoes (PACE) technique.<br>Magnetic Resonance in Medicine, 1999, 42, 1089-1097.                                                                      | 1.9 | 11        |
| 89 | Assessment of ferritin content in multiple sclerosis brains using temperatureâ€induced R* <sub>2</sub><br>changes. Magnetic Resonance in Medicine, 2018, 79, 1609-1615.                                                           | 1.9 | 11        |
| 90 | Excessive White Matter Hyperintensity Increases Susceptibility to Poor Functional Outcomes After Acute Ischemic Stroke. Frontiers in Neurology, 2021, 12, 700616.                                                                 | 1.1 | 11        |

| #   | Article                                                                                                                                                                                           | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Lower Magnetization Transfer Ratio in the Forceps Minor Is Associated with Poorer Gait Velocity in<br>Older Adults. American Journal of Neuroradiology, 2017, 38, 500-506.                        | 1.2 | 9         |
| 92  | Long-term course and morphological MRI correlates of cognitive function in multiple sclerosis.<br>Multiple Sclerosis Journal, 2021, 27, 954-963.                                                  | 1.4 | 9         |
| 93  | Information processing speed as a prognostic marker of physical impairment and progression in patients with multiple sclerosis. Multiple Sclerosis and Related Disorders, 2022, 57, 103353.       | 0.9 | 9         |
| 94  | T1 imaging using phase acquisition of composite echoes. Magnetic Resonance in Medicine, 1999, 41, 386-391.                                                                                        | 1.9 | 8         |
| 95  | T1 maps from shifted spin echoes and stimulated echoes. Magnetic Resonance in Medicine, 2001, 46, 1242-1245.                                                                                      | 1.9 | 8         |
| 96  | Morphological MRI phenotypes of multiple sclerosis differ in resting-state brain function. Scientific<br>Reports, 2019, 9, 16221.                                                                 | 1.6 | 8         |
| 97  | Magnetic resonance elastography of the human brain using a multiphase DENSE acquisition. Magnetic<br>Resonance in Medicine, 2019, 81, 3578-3587.                                                  | 1.9 | 8         |
| 98  | Are morphologic features of recent small subcortical infarcts related to specific etiologic aspects?.<br>Therapeutic Advances in Neurological Disorders, 2019, 12, 175628641983571.               | 1.5 | 8         |
| 99  | Sex-specific lesion pattern of functional outcomes after stroke. Brain Communications, 2022, 4, fcac020.                                                                                          | 1.5 | 8         |
| 100 | Tracking of Magnetite Labeled Nanoparticles in the Rat Brain Using MRI. PLoS ONE, 2014, 9, e92068.                                                                                                | 1.1 | 7         |
| 101 | Free water diffusion MRI and executive function with a speed component in healthy aging. NeuroImage, 2022, 257, 119303.                                                                           | 2.1 | 7         |
| 102 | Quantitative Susceptibility Mapping to Assess Cerebral Vascular Compliance. American Journal of Neuroradiology, 2019, 40, 460-463.                                                                | 1.2 | 6         |
| 103 | Do increases in deep grey matter volumes after electroconvulsive therapy persist in patients with major depression? A longitudinal MRI-study. Journal of Affective Disorders, 2021, 281, 908-917. | 2.0 | 6         |
| 104 | In vivo assessment of anisotropy of apparent magnetic susceptibility in white matter from a single orientation acquisition. Neurolmage, 2021, 241, 118442.                                        | 2.1 | 6         |
| 105 | A Semiautomatic Method for Multiple Sclerosis Lesion Segmentation on Dual-Echo MR Imaging:<br>Application in a Multicenter Context. American Journal of Neuroradiology, 2016, 37, 2043-2049.      | 1.2 | 5         |
| 106 | Microstructural Tissue Changes in Alzheimer Disease Brains: Insights from Magnetization Transfer<br>Imaging. American Journal of Neuroradiology, 2021, 42, 688-693.                               | 1.2 | 5         |
| 107 | Periventricular magnetisation transfer abnormalities in early multiple sclerosis. NeuroImage:<br>Clinical, 2022, 34, 103012.                                                                      | 1.4 | 5         |
| 108 | Development and evaluation of a manual segmentation protocol for deep grey matter in multiple sclerosis: Towards accelerated semi-automated references. NeuroImage: Clinical, 2021, 30, 102659.   | 1.4 | 3         |

| #   | Article                                                                                                                                                                                                              | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Decreased Cerebrospinal Fluid Antioxidative Capacity Is Related to Disease Severity and Progression in Early Multiple Sclerosis. Biomolecules, 2021, 11, 1264.                                                       | 1.8 | 3         |
| 110 | Analysis of deep grey nuclei susceptibility in early childhood: a quantitative susceptibility mapping and R2* study at 3 Tesla. Neuroradiology, 2022, 64, 1021-1031.                                                 | 1.1 | 3         |
| 111 | Quantification of cortical damage in multiple sclerosis using DTI remains a challenge. Brain, 2019, 142, 1848-1850.                                                                                                  | 3.7 | 2         |
| 112 | Assessment and correction of macroscopic field variations in 2D spoiled gradientâ€echo sequences.<br>Magnetic Resonance in Medicine, 2020, 84, 620-633.                                                              | 1.9 | 2         |
| 113 | Investigation of biases in convolutional neural networks for semantic segmentation using performance sensitivity analysis. Zeitschrift Fur Medizinische Physik, 2022, 32, 346-360.                                   | 0.6 | 2         |
| 114 | Measurement of short and ultrashortT2 components using progressive binomial RF saturation.<br>Magnetic Resonance in Medicine, 2006, 56, 265-271.                                                                     | 1.9 | 1         |
| 115 | Gray Matter Covariance Networks as Classifiers and Predictors of Cognitive Function in Alzheimer's<br>Disease. Frontiers in Psychiatry, 2020, 11, 360.                                                               | 1.3 | 1         |
| 116 | Adaptive sliceâ€specific zâ€shimming for 2D spoiled gradientâ€echo sequences. Magnetic Resonance in<br>Medicine, 2021, 85, 818-830.                                                                                  | 1.9 | 1         |
| 117 | Foundations of advanced magnetic resonance imaging. Neurotherapeutics, 2005, 2, 167-196.                                                                                                                             | 2.1 | 1         |
| 118 | Effects of actual and imagined music-cued gait training on motor functioning and brain activity in people with multiple sclerosis: protocol of a randomised parallel multicentre trial. BMJ Open, 2022, 12, e056666. | 0.8 | 1         |
| 119 | Comment on the letter to the editor entitled "Brain iron deposition in patients with white matter<br>hyperintensities of presumed vascular origin―by D. Zhou. Neurobiology of Aging, 2017, 53, 198.                  | 1.5 | 0         |
|     |                                                                                                                                                                                                                      |     |           |

120 Chemo Ion Pumps for Drug Delivery towards in vivo Brain Tumors. , 0, , .

0