Evgeny Rebrov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/505732/publications.pdf

Version: 2024-02-01

163 papers 4,914 citations

94269 37 h-index 128067 60 g-index

174 all docs

174 docs citations

times ranked

174

4140 citing authors

#	Article	IF	CITATIONS
1	Dissolved gas and ultrasonic cavitation – A review. Ultrasonics Sonochemistry, 2013, 20, 1-11.	3.8	245
2	Liquid–liquid slug flow: Hydrodynamics and pressure drop. Chemical Engineering Science, 2011, 66, 42-54.	1.9	165
3	Liquid–Liquid Flow in a Capillary Microreactor: Hydrodynamic Flow Patterns and Extraction Performance. Industrial & Engineering Chemistry Research, 2012, 51, 1015-1026.	1.8	136
4	Single-phase fluid flow distribution and heat transfer in microstructured reactors. Chemical Engineering Science, 2011, 66, 1374-1393.	1.9	125
5	Pressure drop of gas–liquid Taylor flow in round micro-capillaries for low to intermediate Reynolds numbers. Microfluidics and Nanofluidics, 2010, 8, 33.	1.0	122
6	The preparation of highly ordered single layer ZSM-5 coating on prefabricated stainless steel microchannels. Applied Catalysis A: General, 2001, 206, 125-143.	2.2	119
7	Design of a microstructured reactor with integrated heat-exchanger for optimum performance of a highly exothermic reaction. Catalysis Today, 2001, 69, 183-192.	2.2	108
8	Two-phase flow regimes in microchannels. Theoretical Foundations of Chemical Engineering, 2010, 44, 355-367.	0.2	100
9	Numbered-up gas–liquid micro/milli channels reactor with modular flow distributor. Chemical Engineering Journal, 2012, 207-208, 645-655.	6.6	100
10	Hydrodynamics and Mixer-Induced Bubble Formation in Micro Bubble Columns with Single and Multiple-Channels. Chemical Engineering and Technology, 2006, 29, 1015-1026.	0.9	95
11	Capillary microreactors wall-coated with mesoporous titania thin film catalyst supports. Lab on A Chip, 2009, 9, 503-506.	3.1	93
12	Selective Hydrogenation of 2-Methyl-3-butyne-2-ol in a Wall-Coated Capillary Microreactor with a $Pd < sub > 25 < sub > 75 <$	1.3	88
13	Development of the kinetic model of platinum catalyzed ammonia oxidation in a microreactor. Chemical Engineering Journal, 2002, 90, 61-76.	6.6	81
14	ZnO based nanowires grown by chemical vapour deposition for selective hydrogenation of acetylene alcohols. Catalysis Science and Technology, 2011, 1, 768.	2.1	81
15	Structural and magnetic properties of Ni1â^'xZnxFe2O4 (x=0, 0.5 and 1) nanopowders prepared by solâ€"gel method. Journal of Magnetism and Magnetic Materials, 2013, 348, 44-50.	1.0	74
16	Optimization of heat transfer characteristics, flow distribution, and reaction processing for a microstructured reactor/heat-exchanger for optimal performance in platinum catalyzed ammonia oxidation. Chemical Engineering Journal, 2003, 93, 201-216.	6.6	71
17	Preferential CO oxidation over a copper–cerium oxide catalyst in a microchannel reactor. Applied Catalysis A: General, 2008, 350, 53-62.	2.2	69
18	Phase-Transfer Catalysis in Segmented Flow in a Microchannel: Fluidic Control of Selectivity and Productivity. Industrial & Engineering Chemistry Research, 2010, 49, 2681-2687.	1.8	63

#	Article	IF	CITATIONS
19	Gas–liquid–liquid three-phase flow pattern and pressure drop in a microfluidic chip: similarities with gas–liquid/liquid–liquid flows. Lab on A Chip, 2014, 14, 1632.	3.1	61
20	Design criteria for a barrier-based gas–liquid flow distributor for parallel microchannels. Chemical Engineering Journal, 2012, 181-182, 549-556.	6.6	60
21	Effect of resonance frequency, power input, and saturation gas type on the oxidation efficiency of an ultrasound horn. Ultrasonics Sonochemistry, 2011, 18, 209-215.	3.8	59
22	One-step synthesis of ZIF-8/ZnO composites based on coordination defect strategy and its derivatives for photocatalysis. Journal of Alloys and Compounds, 2020, 838, 155219.	2.8	57
23	OpenFlowChem – a platform for quick, robust and flexible automation and self-optimisation of flow chemistry. Reaction Chemistry and Engineering, 2018, 3, 769-780.	1.9	56
24	Microfluidic plasmas: Novel technique for chemistry and chemical engineering. Chemical Engineering Journal, 2021, 417, 129355.	6.6	56
25	Gas hold-up and liquid film thickness in Taylor flow in rectangular microchannels. Chemical Engineering Journal, 2008, 135, S153-S158.	6.6	51
26	Header design for flow equalization in microstructured reactors. AICHE Journal, 2007, 53, 28-38.	1.8	50
27	Structural investigations and magnetic properties of sol-gel Ni0.5Zn0.5Fe2O4 thin films for microwave heating. Journal of Applied Physics, 2010, 107, 044317.	1.1	50
28	Cost Analysis for a Continuously Operated Fine Chemicals Production Plant at 10 Kg/Day Using a Combination of Microprocessing and Microwave Heating. Journal of Flow Chemistry, 2011, 1, 74-89.	1.2	48
29	Microreactors for Gold Nanoparticles Synthesis: From Faraday to Flow. Processes, 2014, 2, 466-493.	1.3	46
30	Fabrication of Magnetic Superstructure NiFe ₂ O ₄ @MOF-74 and Its Derivative for Electrocatalytic Hydrogen Evolution with AC Magnetic Field. ACS Applied Materials & Samp; Interfaces, 2020, 12, 45987-45996.	4.0	45
31	Design methodology for barrierâ€based two phase flow distributor. AICHE Journal, 2012, 58, 3482-3493.	1.8	43
32	Structural, infrared, magnetic and microwave absorption properties of rare earth doped X-type hexagonal nanoferrites. Journal of Alloys and Compounds, 2013, 570, 7-13.	2.8	43
33	Synthesis of protective Mo–Si–B coatings in molten salts and their oxidation behavior in an air–water mixture. Surface and Coatings Technology, 2006, 201, 971-978.	2.2	42
34	Novel synthesis of thick wall coatings of titania supported Bi poisoned Pd catalysts and application in selective hydrogenation of acetylene alcohols in capillary microreactors. Lab on A Chip, 2015, 15, 1952-1960.	3.1	42
35	Non-Thermal Plasma for Process and Energy Intensification in Dry Reforming of Methane. Catalysts, 2020, 10, 1358.	1.6	42
36	Method for the in situ preparation of a single layer of zeolite Beta crystals on a molybdenum substrate for microreactor applications. Journal of Catalysis, 2007, 247, 328-338.	3.1	40

#	Article	IF	CITATIONS
37	A kinetic study of the liquid-phase hydrogenation of citral on Au/TiO2 and Pt–Sn/TiO2 thin films in capillary microreactors. Applied Catalysis A: General, 2011, 399, 12-21.	2.2	40
38	Nanosized Ce–Zn substituted microwave absorber material for X-band applications. Journal of Magnetism and Magnetic Materials, 2014, 370, 25-31.	1.0	40
39	Control of the thickness of mesoporous titania films for application in multiphase catalytic microreactors. Journal of Catalysis, 2010, 271, 161-169.	3.1	39
40	Oxidation of organic compounds in a microstructured catalytic reactor. Chemical Engineering Journal, 2008, 135, S57-S65.	6.6	38
41	The enhancement of direct amide synthesis reaction rate over TiO 2 @SiO 2 @NiFe 2 O 4 magnetic catalysts in the continuous flow under radiofrequency heating. Journal of Catalysis, 2017, 355, 120-130.	3.1	38
42	Copper(0) in the Ullmann heterocycle-aryl ether synthesis of 4-phenoxypyridine using multimode microwave heating. Tetrahedron Letters, 2010, 51, 248-251.	0.7	37
43	Design, scale-out, and operation of a microchannel reactor with a Cu/CeO2â°x catalytic coating for preferential CO oxidation. Chemical Engineering Journal, 2010, 160, 923-929.	6.6	37
44	Gold supported on mesoporous titania thin films for application in microstructured reactors in low-temperature water-gas shift reaction. Catalysis Today, 2008, 138, 210-215.	2.2	36
45	Structural and magnetic properties of sol–gel Co2xNi0.5â^'x Zn0.5â^'xFe2O4 thin films. Journal of Magnetism and Magnetic Materials, 2011, 323, 723-729.	1.0	36
46	Direct amide formation using radiofrequency heating. Organic and Biomolecular Chemistry, 2013, 11, 4171-4177.	1.5	36
47	A highly active and synergistic Pt/Mo2C/Al2O3 catalyst for water-gas shift reaction. Molecular Catalysis, 2018, 455, 38-47.	1.0	36
48	Synthesis of molybdenum borides and molybdenum silicides in molten salts and their oxidation behavior in an air–water mixture. Surface and Coatings Technology, 2005, 195, 182-188.	2.2	35
49	Scale up study of capillary microreactors in solvent-free semihydrogenation of 2â€methylâ€3â€butynâ€2â€ol. Catalysis Today, 2016, 273, 205-212.	2.2	33
50	Solvent-free semihydrogenation of acetylene alcohols in a capillary reactor coated with a Pd–Bi/TiO 2 catalyst. Applied Catalysis A: General, 2016, 515, 108-115.	2.2	33
51	Mesoporous silica films as catalyst support for microstructured reactors: Preparation and characterization. Chemical Engineering Journal, 2008, 135, S99-S103.	6.6	32
52	Designing flow and temperature uniformities in parallel microchannels reactor. AICHE Journal, 2014, 60, 1941-1952.	1.8	32
53	A Kinetic Study of Ammonia Oxidation on a Pt Catalyst in the Explosive Region in a Microstructured Reactor/Heat-Exchanger. Chemical Engineering Research and Design, 2003, 81, 744-752.	2.7	31
54	Design of a molybdenum high throughput microreactor for high temperature screening of catalytic coatings. Chemical Engineering Journal, 2004, 101, 225-235.	6.6	31

#	Article	IF	CITATIONS
55	Mechanism of Ultrasound Scission of a Silver–Carbene Coordination Polymer. Journal of Physical Chemistry B, 2011, 115, 11038-11043.	1.2	31
56	Study of the water-gas shift reaction on Mo2C/Mo catalytic coatings for application in microstructured fuel processors. Catalysis Today, 2007, 125, 88-96.	2.2	29
57	Design of Pt–Sn catalysts on mesoporous titania films for microreactor application. Catalysis Today, 2009, 147, S81-S86.	2.2	29
58	Microwave-assisted Cu-catalyzed Ullmann ether synthesis in a continuous-flow milli-plant. Chemical Engineering Journal, 2012, 207-208, 426-439.	6.6	28
59	Influence of Nd-Co Substitution on Structural, Electrical, and Dielectric Properties of X-Type Hexagonal Nanoferrites. Journal of Materials Engineering and Performance, 2014, 23, 622-627.	1.2	28
60	Mechanochemical synthesis of TiO2/NiFe2O4 magnetic catalysts for operation under RF field. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2015, 193, 175-180.	1.7	28
61	Hydrodynamic cavitation in micro channels with channel sizes of 100 and 750 micrometers. Microfluidics and Nanofluidics, 2012, 12, 499-508.	1.0	27
62	Hydrothermal synthesis and characterization of ZSM-5 coatings on a molybdenum support and scale-up for application in micro reactors. Catalysis Today, 2005, 110, 38-46.	2.2	26
63	Optimization of anodic oxidation and Cu–Cr oxide catalyst preparation on structured aluminum plates processed by electro discharge machining. Catalysis Today, 2005, 105, 516-528.	2.2	26
64	Enhancement of the Liquid-Side Mass Transfer in a Falling Film Catalytic Microreactor by In-Channel Mixing Structures. Industrial & Engineering Chemistry Research, 2012, 51, 8719-8725.	1.8	26
65	Design and operation of a radio-frequency heated micro-trickle bed reactor for consecutive catalytic reactions. Chemical Engineering Journal, 2015, 281, 884-891.	6.6	26
66	A microstructured reactor/heat-exchanger for the water–gas shift reaction operated in the 533–673K range. Catalysis Today, 2009, 147, S198-S203.	2.2	25
67	Mechanistic Insights into the Desorption of Methanol and Dimethyl Ether Over ZSM-5 Catalysts. Catalysis Letters, 2018, 148, 474-488.	1.4	25
68	Active site isolation in bismuth-poisoned Pd/SiO2 catalysts for selective hydrogenation of furfural. Applied Catalysis A: General, 2019, 570, 183-191.	2.2	25
69	Synthesis and characterization of mesoporous silica thin films as a catalyst support on a titanium substrate. Thin Solid Films, 2007, 515, 6391-6394.	0.8	24
70	Microwave-assisted hydrothermal synthesis of zeolite Beta coatings on ALD-modified borosilicate glass for application in microstructured reactors. Chemical Engineering Journal, 2008, 135, S117-S120.	6.6	24
71	Cu-Based Nanoalloys in the Base-Free Ullmann Heterocyle-Aryl Ether Synthesis. Organic Process Research and Development, 2010, 14, 644-649.	1.3	24
72	Effect of the Load Size on the Efficiency of Microwave Heating Under Stop Flow and Continuous Flow Conditions. Journal of Microwave Power and Electromagnetic Energy, 2012, 46, 83-92.	0.4	24

#	Article	IF	Citations
73	Structural, magnetic and thermal properties of one-dimensional CoFe2O4 microtubes. Journal of Alloys and Compounds, 2016, 665, 428-434.	2.8	24
74	Gas-liquid hydrogenation in continuous flow – The effect of mass transfer and residence time in powder packed-bed and catalyst-coated reactors. Chemical Engineering Journal, 2020, 379, 122292.	6.6	24
75	Direct amide synthesis over core–shell TiO ₂ @NiFe ₂ O ₄ catalysts in a continuous flow radiofrequency-heated reactor. RSC Advances, 2016, 6, 100997-101007.	1.7	23
76	Highly Selective Continuous Flow Hydrogenation of Cinnamaldehyde to Cinnamyl Alcohol in a Pt/SiO2 Coated Tube Reactor. Catalysts, 2018, 8, 58.	1.6	23
77	Miniaturization of Heterogeneous Catalytic Reactors: Prospects for New Developments in Catalysis and Process Engineering. Chimia, 2002, 56, 627-635.	0.3	22
78	Experimental Validation of the Performance of a Microreactor for the High-Throughput Screening of Catalytic Coatings. Industrial & Engineering Chemistry Research, 2007, 46, 3922-3931.	1.8	22
79	Selectivity control in hydrogenation reactions by nanoconfinement of polymetallic nanoparticles in mesoporous thin films. Applied Catalysis A: General, 2009, 368, 87-96.	2.2	22
80	Design of a radio frequency heated isothermal micro-trickle bed reactor. Chemical Engineering Journal, 2014, 243, 225-233.	6.6	22
81	Energy efficient and controlled flow processing under microwave heating by using a millireactor–heat exchanger. AICHE Journal, 2012, 58, 3144-3155.	1.8	21
82	Process Intensification of Alkynol Semihydrogenation in a Tube Reactor Coated with a Pd/ZnO Catalyst. Catalysts, 2017, 7, 358.	1.6	21
83	Application of alternative energy forms in catalytic reactor engineering. Green Processing and Synthesis, $2012,1,.$	1.3	20
84	Scale-up of Microwave Assisted Flow Synthesis by Transient Processing through Monomode Cavities in Series. Organic Process Research and Development, 2014, 18, 1400-1407.	1.3	20
85	Influence of ceramic substrate porosity and glass phase content on the microstructure and mechanical properties of metallized ceramics via an activated Mo-Mn method. Ceramics International, 2020, 46, 8244-8254.	2.3	20
86	Thermodynamic potential of a novel plasma-assisted sustainable process for co-production of ammonia and hydrogen with liquid metals. Energy Conversion and Management, 2020, 210, 112709.	4.4	20
87	Micro/Milliflow Processing with Selective Catalyst Microwave Heating in the Cuâ€Catalyzed Ullmann Etherification Reaction: A 1¼ ² â€Process. ChemSusChem, 2013, 6, 353-366.	3 . 6	19
88	Hydrolytic hydrogenation of cellulose in subcritical water with the use of the Ru-containing polymeric catalysts. Catalysis Today, 2017, 280, 45-50.	2.2	19
89	Hydrothermal synthesis of a continuous zeolite Beta layer by optimization of time, temperature and heating rate of the precursor mixture. Microporous and Mesoporous Materials, 2007, 106, 95-106.	2.2	18
90	Sol-gel synthesis of zeolite coatings and their application in catalytic microstructured reactors. Catalysis in Industry, 2009, 1, 322-347.	0.3	18

#	Article	IF	CITATIONS
91	Microwave assisted flow synthesis: Coupling of electromagnetic and hydrodynamic phenomena. AICHE Journal, 2014, 60, 3824-3832.	1.8	18
92	Propane and oxygen action on NOx adspecies on low-exchanged Cu-ZSM-5. Catalysis Letters, 1998, 51, 27-40.	1.4	17
93	A radiofrequency heated reactor system for post-combustion carbon capture. Chemical Engineering and Processing: Process Intensification, 2016, 108, 17-26.	1.8	17
94	Magnetic zeolites: novel nanoreactors through radiofrequency heating. Chemical Communications, 2017, 53, 4262-4265.	2.2	17
95	High-throughput screening of Co-BEA and Co-ZSM-5 coatings in the ammoxidation of ethylene to acetonitrile in a microstructured reactor. Chemical Engineering Science, 2007, 62, 5097-5101.	1.9	16
96	Economic Optimization of Local Australian Ammonia Production Using Plasma Technologies with Green/Turquoise Hydrogen. ACS Sustainable Chemistry and Engineering, 2021, 9, 16304-16315.	3.2	16
97	Dinitrogen formation over low-exchanged Cu-ZSM-5 in the selective reduction of NO by propane. Catalysis Letters, 1999, 58, 107-118.	1.4	15
98	Redispersion Microreactor System for Phase Transferâ€Catalyzed Esterification. Chemical Engineering and Technology, 2011, 34, 1691-1699.	0.9	15
99	Continuous Multitubular Millireactor with a Cu Thin Film for Microwave-Assisted Fine-Chemical Synthesis. Industrial & Engineering Chemistry Research, 2012, 51, 14344-14354.	1.8	15
100	Performance of novel CaO-based sorbents in high temperature CO 2 capture under RF heating. Chemical Engineering and Processing: Process Intensification, 2017, 122, 487-492.	1.8	15
101	Process Intensification of Continuous-Flow Imine Hydrogenation in Catalyst-Coated Tube Reactors. Industrial & Description of Chemistry Research, 2019, 58, 4433-4442.	1.8	15
102	The Effects of Pulse Shape on the Selectivity and Production Rate in Non-oxidative Coupling of Methane by a Micro-DBD Reactor. Plasma Chemistry and Plasma Processing, 2022, 42, 619-640.	1.1	15
103	Design of a thick-walled screen for flow equalization in microstructured reactors. Journal of Micromechanics and Microengineering, 2007, 17, 633-641.	1.5	14
104	New Cuâ€Based Catalysts Supported on TiO ₂ Films for Ullmann S _N Arâ€Type CO Coupling Reactions. Chemistry - A European Journal, 2012, 18, 1800-1810.	1.7	14
105	Effect of Pr3+ substitution on the microstructure, specific surface area, magnetic properties and specific heating rate of Ni0.5Zn0.5Pr Fe2â^'O4 nanoparticles synthesized via solâ€"gel method. Journal of Alloys and Compounds, 2015, 639, 626-634.	2.8	14
106	Metal oxide–zeolite composites in transformation of methanol to hydrocarbons: do iron oxide and nickel oxide matter?. RSC Advances, 2016, 6, 75166-75177.	1.7	14
107	Hydrogenation of bio-oil into higher alcohols over Ru/Fe3O4-SiO2 catalysts. Fuel Processing Technology, 2017, 167, 738-746.	3.7	14
108	Zeolite minilith: A unique structured catalyst for the methanol to gasoline process. Chemical Engineering and Processing: Process Intensification, 2018, 131, 137-143.	1.8	14

#	Article	IF	CITATIONS
109	Survey of Synthesis Processes for N-Doped Carbon Dots Assessed by Green Chemistry and Circular and EcoScale Metrics. ACS Sustainable Chemistry and Engineering, 2021, 9, 4755-4770.	3.2	14
110	Electrochemical Synthesis of Mo2C Catalytical Coatings for the Water-Gas Shift Reaction. Zeitschrift Fur Naturforschung - Section A Journal of Physical Sciences, 2007, 62, 647-654.	0.7	13
111	Limiting withdrawal rate and maximum film thickness during dip-coating of titania sols onto a Si substrate. Chemical Engineering and Processing: Process Intensification, 2011, 50, 1063-1068.	1.8	13
112	Microwave Setup Design for Continuous Fine hemicals Synthesis. Chemical Engineering and Technology, 2014, 37, 1645-1653.	0.9	13
113	Counting bubbles: precision process control of gas–liquid reactions in flow with an optical inline sensor. Reaction Chemistry and Engineering, 2019, 4, 112-121.	1.9	13
114	Determination of the Tolman length in the improved Derjaguin–Broekhoff–de Boer theory for capillary condensation of ethanol in mesoporous thin films by ellipsometric porosimetry. Microporous and Mesoporous Materials, 2009, 123, 243-252.	2.2	12
115	Enhancement Factor for Gas Absorption in a Finite Liquid Layer. Part 1: Instantaneous Reaction in a Liquid in Plug Flow. Chemical Engineering and Technology, 2012, 35, 679-692.	0.9	11
116	Hydrogenation of levulinic acid using Ru-containing catalysts based on hypercrosslinked polystyrene. Green Processing and Synthesis, 2017, 6, 281-286.	1.3	11
117	3D Analysis of Heat Transfer Intensification by Reâ€Entrance Flow Pinâ€Fins Microstructures with a Highly Thermalâ€Conductive Plate. Chemical Engineering and Technology, 2011, 34, 379-390.	0.9	10
118	Simulation study of a pulsed DBD with an electrode containing charge injector parts. Physics of Plasmas, 2021, 28, .	0.7	10
119	Confined palladium colloids in mesoporous frameworks for carbon nanotube growth. Journal of Materials Science, 2009, 44, 6563-6570.	1.7	9
120	Enhancement of the stability of microporous silica films in non-aqueous solvents at elevated temperature. Microporous and Mesoporous Materials, 2009, 124, 20-29.	2.2	9
121	Rational design for the microplasma synthesis from vitamin B9 to N-doped carbon quantum dots towards selected applications. Carbon, 2022, 198, 22-33.	5.4	9
122	Preparation and characterization of bimetallic catalysts supported on mesoporous silica films. Studies in Surface Science and Catalysis, 2006, , 167-174.	1.5	8
123	Catalytic Mo2C coatings for the water gas shift reaction: Electrosynthesis in molten salts. Kinetics and Catalysis, 2008, 49, 594-598.	0.3	8
124	Magnetic enrichment behavior of monodispersed MFe2O4 nanoferrites (M= Mg, Ca, Ni, Co, and Cu). Ceramics International, 2019, 45, 15980-15989.	2.3	8
125	Eustress in Space: Opportunities for Plant Stressors Beyond the Earth Ecosystem. Frontiers in Astronomy and Space Sciences, 2022, 9, .	1.1	8
126	Rateâ€determining stage in NO SCR with propane on lowâ€exchanged Cuâ€ZSMâ€5 catalyst. Catalysis Letters, 2000, 64, 129-134.	1.4	7

#	Article	IF	Citations
127	Advances in water-gas shift technology: modern catalysts and improved reactor concepts. , 2011, , 387-412.		7
128	Microwave-assisted organic synthesis in microstructured reactors. Russian Journal of General Chemistry, 2012, 82, 2060-2069.	0.3	7
129	Thermal Behavior of a Catalytic Packed-Bed Milli-reactor Operated under Radio Frequency Heating. Industrial & Engineering Chemistry Research, 2017, 56, 13273-13280.	1.8	7
130	Synthesis of Mo2C coatings by simultaneous electroreduction of MoO 4 2â^ and CO 3 2â^ ions in molten salts and their catalytic activity for the water-gas shift reaction. Doklady Chemistry, 2008, 421, 186-189.	0.2	6
131	Enhancement Factor for Gas Absorption in a Finite Liquid Layer. Part 2: First―and Secondâ€Order Reactions in a Liquid in Plug Flow. Chemical Engineering and Technology, 2012, 35, 859-869.	0.9	6
132	Magnetic actuation of catalytic microparticles for the enhancement of mass transfer rate in a flow reactor. Chemical Engineering Journal, 2016, 306, 352-361.	6.6	6
133	Temperature dependence of the magnetic properties of mono-dispersed Co0.5Zn0.5Fe2O4 microtubes derived from different templates. Journal of Materials Science: Materials in Electronics, 2019, 30, 2809-2820.	1.1	6
134	Direct Amide Synthesis over Composite Magnetic Catalysts in a Continuous Flow Reactor. Catalysts, 2021, 11, 146.	1.6	6
135	Controllable synthesis of one-dimensional isolated Ni 0.5 Zn 0.5 Fe 2 O 4 microtubes for application as catalyst support in RF heated reactors. Ceramics International, 2016, 42, 7793-7802.	2.3	5
136	Synthesis of Thin Titania Coatings onto the Inner Surface of Quartz Tubes and Their Photoactivity in Decomposition of Methylene Blue and Rhodamine B. Catalysts, 2021, 11, 1538.	1.6	5
137	Catalytic and adsorptive properties of a Cu-ZSM-5 catalyst synthesized by solid-phase method. Reaction Kinetics and Catalysis Letters, 1997, 60, 313-321.	0.6	4
138	Hydrothermal Synthesis of Zeolitic Coatings for Applications in Micro-structured Reactors. , 2009, , 311-334.		4
139	Use of microtechnologies for intensifying industrial processes. Theoretical Foundations of Chemical Engineering, 2010, 44, 791-799.	0.2	4
140	Redispersion Microreactor System for Phase Transfer Catalyzed Esterification. Chemie-Ingenieur-Technik, 2011, 83, 1096-1106.	0.4	4
141	A Kinetic Study on the Cu(0)-Catalyzed Ullmann-Type Nucleophilic Aromatic Substitution C–O Coupling of Potassium Phenolate and 4-Chloropyridine. Industrial & Engineering Chemistry Research, 2013, 52, 18206-18214.	1.8	4
142	Scale-up of an RF heated micro trickle bed reactor to a kg/day production scale. Green Processing and Synthesis, 2015, 4, .	1.3	4
143	Design of catalytic micro trickle bed reactors. Chemistry Select, 2016, 1 , .	0.7	4
144	Lignin-containing Feedstock Hydrogenolysis for Biofuel Component Production. Bulletin of Chemical Reaction Engineering and Catalysis, 2018, 13, 74-81.	0.5	4

#	Article	IF	CITATIONS
145	Catalytic coatings of new generation based on Mo2C and a microstructured reactor for steam conversion of carbon monoxide. Russian Journal of Applied Chemistry, 2014, 87, 601-607.	0.1	3
146	Tunable enhanced Faraday rotation in a defected plasma photonic crystal under external magnetic field with different declinations. Journal Physics D: Applied Physics, 2021, 54, 505203.	1.3	3
147	Process Intensification in Photocatalytic Decomposition of Formic Acid over a TiO2 Catalyst by Forced Periodic Modulation of Concentration, Temperature, Flowrate and Light Intensity. Processes, 2021, 9, 2046.	1.3	3
148	Revisiting the Effect of U-Bends, Flow Parameters, and Feasibility for Scale-Up on Residence Time Distribution Curves for a Continuous Bioprocessing Oscillatory Baffled Flow Reactor. Industrial & Distribution Curves Chemistry Research, 2022, 61, 11181-11196.	1.8	3
149	Catalysts of new generation and microstructured heat-exchanger reactors for the water-gas shift reaction. Russian Journal of General Chemistry, 2012, 82, 2070-2078.	0.3	2
150	Enhancement Factor for Gas Absorption in a Finite Liquid Layer. Part 3: Instantaneous and Secondâ€Order Reactions in a Liquid in Laminar Flow. Chemical Engineering and Technology, 2012, 35, 1473-1485.	0.9	2
151	Cellulose hydrogenolysis with the use of the catalysts supported on hypercrosslinked polystyrene. AIP Conference Proceedings, 2016, , .	0.3	2
152	Enhanced Droplet Size Control in Liquidâ€Liquid Emulsions Obtained inÂaÂWireâ€Guided Xâ€Mixer. Chemical Engineering and Technology, 2019, 42, 1053-1058.	0.9	2
153	Microwave Absorbing Ferrite Thin Films for Microwave Heating of Microstructured Reactors. Materials Research Society Symposia Proceedings, 2009, 1222, 1.	0.1	1
154	Droplet size control with methanolâ€repellent surface in a sampling device for continuous annular electrochromatography. Journal of Separation Science, 2012, 35, 445-451.	1.3	1
155	Design of a Compact Microreactor/Heat-Exchanger for a Distributed Production of Liquid Hydrocarbons from Methanol. Reactions, 2021, 2, 427-441.	0.9	1
156	Hydrolytic Hydrogenation of Cellulose with the Use of the Ru-containing Polymeric Catalysts. , 2021, 1, 35-41.		1
157	Miniaturization of Heterogeneous Catalytic Reactors: Prospects for New Developments in Catalysis and Process Engineering. ChemInform, 2003, 34, no.	0.1	0
158	FTIR study of acetone oxime interaction with H-ZSM-5 and Cu-ZSM-5., 2004,,.		0
159	Corrigendum to "Copper(0) in the Ullmann heterocycle-aryl ether synthesis of 4-phenoxypyridine using multimode microwave heating―[Tetrahedron Lett. 51 (2010) 248]. Tetrahedron Letters, 2010, 51, 5849.	0.7	O
160	Two-stage electrochemical synthesis of double molybdenum carbides. Russian Metallurgy (Metally), 2011, 2011, 767-773.	0.1	0
161	5. Design of catalytic micro trickle bed reactors. , 2015, , 174-219.		0
162	Novel Zeolite Catalysts for Methanol to Hydrocarbon Transformation. , 2019, , 321-356.		0

ARTICLE IF CITATIONS

163 Evaluation of D-glucose Hydrogenation Catalysts Suability in Different Reactor Systems., 2021, 1, 53-57. 0