Kathryn DeFea

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/505709/publications.pdf

Version: 2024-02-01

37 papers 4,677 citations

201674

27

h-index

395702 33 g-index

38 all docs 38 docs citations

38 times ranked 5231 citing authors

#	Article	IF	CITATIONS
1	Proteinase-activated receptors (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide To Pharmacology CITE, 2019, 2019, .	0.2	3
2	Arresting CCR4: A New Look at an Old Approach to Combating Asthma. American Journal of Respiratory Cell and Molecular Biology, 2018, 58, 673-675.	2.9	2
3	Smoothened determines β-arrestin–mediated removal of the G protein–coupled receptor Gpr161 from the primary cilium. Journal of Cell Biology, 2016, 212, 861-875.	5.2	114
4	The novel <scp>PAR</scp> 2 ligand <scp>C</scp> 391 blocks multiple <scp>PAR</scp> 2 signalling pathways <i>in vitro</i> and <i>in vivo</i> British Journal of Pharmacology, 2015, 172, 4535-4545.	5.4	33
5	Role for \hat{l}^2 -arrestin in mediating paradoxical \hat{l}^2 2AR and PAR2 signaling in asthma. Current Opinion in Pharmacology, 2014, 16, 142-147.	3.5	39
6	Molecular Mechanisms Underlying Beta-Arrestin-Dependent Chemotaxis and Actin-Cytoskeletal Reorganization. Handbook of Experimental Pharmacology, 2014, 219, 341-359.	1.8	18
7	Optogenetics to target actin-mediated synaptic loss in Alzheimer's., 2013,,.		4
8	βâ€Arrestinâ€kinase scaffolds: turn them on or turn them off?. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2013, 5, 231-241.	6.6	18
9	Select G-Protein-Coupled Receptors Modulate Agonist-Induced Signaling via a ROCK, LIMK, and \hat{l}^2 -Arrestin 1 Pathway. Cell Reports, 2013, 5, 1010-1021.	6.4	45
10	Divergent Î ² -Arrestin-dependent Signaling Events Are Dependent upon Sequences within G-protein-coupled Receptor C Termini. Journal of Biological Chemistry, 2013, 288, 3265-3274.	3.4	19
11	\hat{l}^2 -Arrestin-2 mediates the proinflammatory effects of proteinase-activated receptor-2 in the airway. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 16660-16665.	7.1	76
12	Cofilin under control of \hat{l}^2 -arrestin-2 in NMDA-dependent dendritic spine plasticity, long-term depression (LTD), and learning. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E442-51.	7.1	117
13	Targeting proteinase-activated receptors: therapeutic potential and challenges. Nature Reviews Drug Discovery, 2012, 11, 69-86.	46.4	272
14	Beta-arrestins as regulators of signal termination and transduction: How do they determine what to scaffold?. Cellular Signalling, 2011, 23, 621-629.	3.6	125
15	\hat{l}^2 -Arrestin-Dependent Actin Reorganization: Bringing the Right Players Together at the Leading Edge. Molecular Pharmacology, 2011, 80, 760-768.	2.3	57
16	Neutrophil Elastase Acts as a Biased Agonist for Proteinase-activated Receptor-2 (PAR2). Journal of Biological Chemistry, 2011, 286, 24638-24648.	3.4	142
17	Î ² -Arrestins Scaffold Cofilin with Chronophin to Direct Localized Actin Filament Severing and Membrane Protrusions Downstream of Protease-activated Receptor-2. Journal of Biological Chemistry, 2010, 285, 14318-14329.	3.4	65
18	Agonist-Biased Signaling via Proteinase Activated Receptor-2: Differential Activation of Calcium and Mitogen-Activated Protein Kinase Pathways. Molecular Pharmacology, 2009, 76, 791-801.	2.3	96

#	Article	IF	CITATIONS
19	Focal Adhesion Kinase Acts Downstream of EphB Receptors to Maintain Mature Dendritic Spines by Regulating Cofilin Activity. Journal of Neuroscience, 2009, 29, 8129-8142.	3.6	139
20	AMP-Activated Protein Kinase Functionally Phosphorylates Endothelial Nitric Oxide Synthase Ser633. Circulation Research, 2009, 104, 496-505.	4.5	230
21	T1228 Differential Regulation of Chemokines By Interleukin 17 in Colonic Epithelial Cells. Gastroenterology, 2008, 134, A-511.	1.3	0
22	Differential Regulation of Chemokines by IL-17 in Colonic Epithelial Cells. Journal of Immunology, 2008, 181, 6536-6545.	0.8	108
23	Stop That Cell! \hat{l}^2 -Arrestin-Dependent Chemotaxis: A Tale of Localized Actin Assembly and Receptor Desensitization. Annual Review of Physiology, 2007, 69, 535-560.	13.1	102
24	\hat{l}^2 -Arrestin-dependent Regulation of the Cofilin Pathway Downstream of Protease-activated Receptor-2. Journal of Biological Chemistry, 2007, 282, 20634-20646.	3.4	128
25	Transactivation of Vascular Endothelial Growth Factor Receptor-2 by Interleukin-8 (IL-8/CXCL8) Is Required for IL-8/CXCL8-induced Endothelial Permeability. Molecular Biology of the Cell, 2007, 18, 5014-5023.	2.1	178
26	Differential regulation of class IA phosphoinositide 3-kinase catalytic subunits p110 \hat{l} ± and \hat{l} ² by protease-activated receptor 2 and \hat{l} ² -arrestins. Biochemical Journal, 2007, 408, 221-230.	3.7	32
27	Multiple Independent Effects of Betaâ€arrestins 1 & 2 in Protease Activated Receptorâ€2 (PARâ€2) desensitization, internalization and signaling. FASEB Journal, 2007, 21, A246.	0.5	0
28	Protease-Activated Receptor-2 Simultaneously Directs β-Arrestin-1-Dependent Inhibition and Gαq-Dependent Activation of Phosphatidylinositol 3-Kinaseâ€. Biochemistry, 2006, 45, 9374-9385.	2.5	68
29	Constitutive Protease-activated Receptor-2-mediated Migration of MDA MB-231 Breast Cancer Cells Requires Both β-Arrestin-1 and -2. Journal of Biological Chemistry, 2004, 279, 55419-55424.	3.4	155
30	A Î ² -Arrestin-dependent Scaffold Is Associated with Prolonged MAPK Activation in Pseudopodia during Protease-activated Receptor-2-induced Chemotaxis. Journal of Biological Chemistry, 2003, 278, 34418-34426.	3.4	183
31	Rho-ROCK-LIMK-Cofilin Pathway Regulates Shear Stress Activation of Sterol Regulatory Element Binding Proteins. Circulation Research, 2003, 92, 1296-1304.	4.5	101
32	The proliferative and antiapoptotic effects of substance P are facilitated by formation of a beta -arrestin-dependent scaffolding complex. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 11086-11091.	7.1	379
33	β-Arrestin–Dependent Endocytosis of Proteinase-Activated Receptor 2 Is Required for Intracellular Targeting of Activated Erk1/2. Journal of Cell Biology, 2000, 148, 1267-1282.	5.2	746
34	Protein kinase c (PKC)-induced desensitization of the neurokinin 1 receptor (NK1R): Diminished desensitization of a naturally occurring truncated receptor. Gastroenterology, 2000, 118, A304-A305.	1.3	0
35	Modulation of Insulin Receptor Substrate-1 Tyrosine Phosphorylation by an Akt/Phosphatidylinositol 3-Kinase Pathway. Journal of Biological Chemistry, 1999, 274, 9351-9356.	3.4	192
36	A Transmembrane Form of the Prion Protein in Neurodegenerative Disease. Science, 1998, 279, 827-834.	12.6	687

KATHRYN DEFEA

#	Article	IF	CITATIONS
37	The orientation of DNA fragments in the agarose gels. Analytical Biochemistry, 1988, 174, 393-398.	2.4	4