
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5057036/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An extended smart driver model considering electronic throttle angle changes with memory. Chinese Physics B, 2022, 31, 010504.	0.7	0
2	Nonlinear and bifurcation analysis for a novel heterogeneous continuum model and numerical tests. Transportmetrica B, 2022, 10, 111-138.	1.4	1
3	Bifurcation analysis of an extended macro model considering time delay and anticipation effect. Physica A: Statistical Mechanics and Its Applications, 2022, 585, 126434.	1.2	6
4	Bifurcation analysis of visual angle model with anticipated time and stabilizing driving behavior. Chinese Physics B, 2022, 31, 070507.	0.7	3
5	Short-Term Travel Demand Prediction of Online Ride-Hailing Based on Multi-Factor GRU Model. Sustainability, 2022, 14, 4083.	1.6	2
6	Stability analysis of heterogeneous traffic flow influenced by memory feedback control signal. Applied Mathematical Modelling, 2022, 109, 693-708.	2.2	25
7	Stabilization Strategy of a Novel Car-Following Model with Time Delay and Memory Effect of the Driver. Sustainability, 2022, 14, 7281.	1.6	7
8	Modeling and stability analysis of cyberattack effects on heterogeneous intelligent traffic flow. Physica A: Statistical Mechanics and Its Applications, 2022, 604, 127941.	1.2	23
9	A new two-lane lattice hydrodynamic model on a curved road accounting for the empirical lane-changing rate. Engineering Computations, 2021, 38, 1532-1553.	0.7	5
10	An extended car-following model integrating average speed and electronic throttle dynamics of multiple preceding vehicles. Engineering Computations, 2021, 38, 1607-1632.	0.7	1
11	Analysis of an extended two-lane lattice hydrodynamic model considering mixed traffic flow and self-stabilization effect. Engineering Computations, 2021, 38, 58-82.	0.7	4
12	New feedback control for a novel two-dimensional lattice hydrodynamic model considering driver's memory effect. Physica A: Statistical Mechanics and Its Applications, 2021, 561, 125295.	1.2	11
13	An extended car-following model accounting for two preceding vehicles with mixed maximum velocity. Modern Physics Letters B, 2021, 35, 2150238.	1.0	3
14	Stabilization strategy of a car-following model with multiple time delays of the drivers*. Chinese Physics B, 2021, 30, 120506.	0.7	2
15	A novel two-lane lattice hydrodynamic model on a gradient road considering heterogeneous traffic flow. Modern Physics Letters B, 2021, 35, 2150340.	1.0	3
16	An extended lattice hydrodynamic model considering the average optimal velocity effect field and driver's sensory memory. Modern Physics Letters B, 2021, 35, 2150335.	1.0	4
17	Bifurcation analysis of a heterogeneous continuum traffic flow model. Applied Mathematical Modelling, 2021, 94, 369-387.	2.2	33
18	Bifurcation analysis for a novel heterogeneous continuum model considering electronic throttle angle changes with memory. Applied Mathematics and Computation, 2021, 401, 126079.	1.4	6

#	Article	IF	CITATIONS
19	A novel two-lane continuum model considering driver's expectation and electronic throttle effect. Modern Physics Letters B, 2021, 35, 2150385.	1.0	2
20	Bifurcation control of optimal velocity model through anticipated effect and response time-delay feedback methods. Physica A: Statistical Mechanics and Its Applications, 2021, 574, 125972.	1.2	10
21	An extended car-following model considering the effect of two-sided lateral gap with uncertain velocity on curved road. Engineering Computations, 2021, ahead-of-print, .	0.7	2
22	Analysis of a Novel Two-Dimensional Lattice Hydrodynamic Model Considering Predictive Effect. Mathematics, 2021, 9, 2464.	1.1	2
23	An extended macro model accounting for the driver's timid and aggressive attributions and bounded rationality. Physica A: Statistical Mechanics and Its Applications, 2020, 540, 122988.	1.2	17
24	An improved car-following model considering electronic throttle dynamics and delayed velocity difference. Physica A: Statistical Mechanics and Its Applications, 2020, 558, 125015.	1.2	15
25	Analysis of a novel two-lane lattice model with consideration of density integral and relative flow information. Engineering Computations, 2020, 37, 2939-2955.	0.7	5
26	A novel lattice hydrodynamic model accounting for driver's memory effect and the difference of optimal velocity on curved road. Physica A: Statistical Mechanics and Its Applications, 2020, 559, 125023.	1.2	9
27	An Extended Car-Following Model considering the Driver's Desire for Smooth Driving and Self-Stabilizing Control with Velocity Uncertainty. Mathematical Problems in Engineering, 2020, 2020, 1-17.	0.6	2
28	Bifurcation Control in an Optimal Velocity Model via Double Time-Delay Feedback Method. IEEE Access, 2020, 8, 216162-216175.	2.6	12
29	A New Two-Lane Lattice Hydrodynamic Model considering the Traffic Interruption Probability under Honk Environment. Complexity, 2020, 2020, 1-12.	0.9	Ο
30	A New Continuum Model considering Driving Behaviors and Electronic Throttle Effect on a Gradient Highway. Mathematical Problems in Engineering, 2020, 2020, 1-22.	0.6	10
31	Analysis of a Novel Two-Lane Hydrodynamic Lattice Model Accounting for Driver's Aggressive Effect and Flow Difference Integral. Mathematical Problems in Engineering, 2020, 2020, 1-13.	0.6	6
32	An extended two-lane lattice hydrodynamic model for traffic flow on curved road with passing. Physica A: Statistical Mechanics and Its Applications, 2019, 533, 121915.	1.2	27
33	Effect of speed deviation and anticipation effect of flux difference in the lattice hydrodynamic model. Physica A: Statistical Mechanics and Its Applications, 2019, 531, 121751.	1.2	9
34	An extended car-following model by considering the optimal velocity difference and electronic throttle angle. Physica A: Statistical Mechanics and Its Applications, 2019, 535, 122216.	1.2	7
35	Self-stabilizing analysis of an extended car-following model with consideration of expected effect. Physica A: Statistical Mechanics and Its Applications, 2019, 535, 122423.	1.2	5
36	Nonlinear analysis of a new two-lane lattice hydrodynamic model accounting for "backward looking― effect and relative flow information. Modern Physics Letters B, 2019, 33, 1950223.	1.0	7

#	Article	IF	CITATIONS
37	A car-following model considering the effect of electronic throttle opening angle over the curved road. Physica A: Statistical Mechanics and Its Applications, 2019, 534, 122377.	1.2	13
38	Nonlinear analysis for a modified continuum model considering electronic throttle (ET) and backward looking effect. Physica A: Statistical Mechanics and Its Applications, 2019, 535, 122362.	1.2	18
39	An extended car-following model considering driver's memory and average speed of preceding vehicles with control strategy. Physica A: Statistical Mechanics and Its Applications, 2019, 521, 752-761.	1.2	75
40	An extended car-following model considering driver's desire for smooth driving on the curved road. Physica A: Statistical Mechanics and Its Applications, 2019, 527, 121426.	1.2	20
41	Analysis of a novel lattice hydrodynamic model considering predictive effect and flow integral. Physica A: Statistical Mechanics and Its Applications, 2019, 527, 121425.	1.2	13
42	Analysis of a novel lattice hydrodynamic model considering density integral and "backward looking― effect. Physica A: Statistical Mechanics and Its Applications, 2019, 525, 714-723.	1.2	19
43	Influences of acceleration with memory on stability of traffic flow and vehicle's fuel consumption. Physica A: Statistical Mechanics and Its Applications, 2019, 525, 143-154.	1.2	12
44	Analysis of the historical time integral form of relative flux and feedback control in an extended lattice hydrodynamic model. Physica A: Statistical Mechanics and Its Applications, 2019, 523, 326-334.	1.2	3
45	An improved anisotropic continuum model considering the driver's desire for steady driving. Physica A: Statistical Mechanics and Its Applications, 2019, 525, 1449-1462.	1.2	1
46	An extended car-following model considering driver's sensory memory and the backward looking effect. Physica A: Statistical Mechanics and Its Applications, 2019, 525, 278-289.	1.2	27
47	A new lattice hydrodynamic model accounting for the traffic interruption probability on a gradient highway. Physics Letters, Section A: General, Atomic and Solid State Physics, 2019, 383, 1879-1887.	0.9	27
48	Analysis of the predictive effect and feedback control in an extended lattice hydrodynamic model. Engineering Computations, 2019, 37, 1645-1661.	0.7	2
49	Analysis of a Novel Two-Lane Lattice Hydrodynamic Model Considering the Empirical Lane Changing Rate and the Self-Stabilization Effect. IEEE Access, 2019, 7, 174725-174733.	2.6	24
50	An extended lattice hydrodynamic model considering the delayed feedback control on a curved road. Physica A: Statistical Mechanics and Its Applications, 2019, 513, 510-517.	1.2	72
51	Nonlinear analysis of an improved continuum model considering mean-field velocity difference. Physics Letters, Section A: General, Atomic and Solid State Physics, 2019, 383, 622-629.	0.9	25
52	An extended lattice hydrodynamic model considering the driver's sensory memory and delayed-feedback control. Physica A: Statistical Mechanics and Its Applications, 2019, 514, 522-532.	1.2	35
53	An extended macro model accounting for acceleration changes with memory and numerical tests. Physica A: Statistical Mechanics and Its Applications, 2018, 506, 270-283.	1.2	17
54	Numerical treatment for solving two-dimensional space-fractional advection–dispersion equation using meshless method. Modern Physics Letters B, 2018, 32, 1850073.	1.0	6

#	Article	IF	CITATIONS
55	An extended car-following model considering random safety distance with different probabilities. Modern Physics Letters B, 2018, 32, 1850056.	1.0	14
56	A new lattice hydrodynamic model based on control method considering the flux change rate and delay feedback signal. Physics Letters, Section A: General, Atomic and Solid State Physics, 2018, 382, 482-488.	0.9	26
57	An extended heterogeneous car-following model accounting for anticipation driving behavior and mixed maximum speeds. Physics Letters, Section A: General, Atomic and Solid State Physics, 2018, 382, 489-498.	0.9	21
58	KdV-Burgers equation in the modified continuum model considering the "backward looking―effect. Nonlinear Dynamics, 2018, 91, 2007-2017.	2.7	14
59	Nonlinear analysis of an improved continuum model considering headway change with memory. Modern Physics Letters B, 2018, 32, 1850037.	1.0	10
60	An improved lattice hydrodynamic model considering the "backward looking―effect and the traffic interruption probability. Nonlinear Dynamics, 2018, 91, 777-784.	2.7	48
61	Meshless analysis of two-dimensional two-sided space-fractional wave equation based on improved moving least-squares approximation. International Journal of Computer Mathematics, 2018, 95, 540-560.	1.0	15
62	Nonlinear density wave investigation for an extended car-following model considering driver's memory and jerk. Modern Physics Letters B, 2018, 32, 1750366.	1.0	22
63	Nonlinear analysis for an improved car-following model account for the optimal velocity changes with memory. Physica A: Statistical Mechanics and Its Applications, 2018, 507, 278-288.	1.2	11
64	An extended car-following model considering the self-stabilizing driving behavior of headway. Physica A: Statistical Mechanics and Its Applications, 2018, 507, 347-357.	1.2	15
65	Effects of speed deviation and density difference in traffic lattice hydrodynamic model with interruption. Physica A: Statistical Mechanics and Its Applications, 2018, 506, 900-908.	1.2	20
66	An extended heterogeneous car-following model with the consideration of the drivers' different psychological headways. Physica A: Statistical Mechanics and Its Applications, 2018, 506, 1113-1125.	1.2	24
67	Nonlinear analysis for a modified continuum model considering driver's memory and backward looking effect. Physica A: Statistical Mechanics and Its Applications, 2018, 508, 18-27.	1.2	30
68	An extended lattice hydrodynamic model based on control theory considering the memory effect of flux difference. Physica A: Statistical Mechanics and Its Applications, 2018, 509, 809-816.	1.2	19
69	A new control method based on the lattice hydrodynamic model considering the double flux difference. Chinese Physics B, 2018, 27, 050503.	0.7	8
70	KdV–Burgers equation in the modified continuum model considering the effect of friction and radius on a curved road. Physica A: Statistical Mechanics and Its Applications, 2018, 503, 1218-1227.	1.2	16
71	An extended car-following model under V2V communication environment and its delayed-feedback control. Physica A: Statistical Mechanics and Its Applications, 2018, 508, 349-358.	1.2	61
72	TDGL and mKdV equations for car-following model considering traffic jerk and velocity difference. Nonlinear Dynamics, 2017, 87, 1809-1817.	2.7	54

#	Article	IF	CITATIONS
73	High-order numerical modeling for two-dimensional two-sided space-fractional wave equation based on meshless method. International Journal of Computational Materials Science and Engineering, 2017, 06, 1750002.	0.5	1
74	An extended continuum model accounting for the driver's timid and aggressive attributions. Physics Letters, Section A: General, Atomic and Solid State Physics, 2017, 381, 1302-1312.	0.9	146
75	A new continuum model based on full velocity difference model considering traffic jerk effect. Nonlinear Dynamics, 2017, 89, 639-649.	2.7	35
76	The meshless method for two-dimensional space-time fractional dispersion equation based on reproducing kernel particle method. International Journal of Computational Materials Science and Engineering, 2017, 06, 1750015.	0.5	0
77	An extended macro traffic flow model accounting for multiple optimal velocity functions with different probabilities. Physics Letters, Section A: General, Atomic and Solid State Physics, 2017, 381, 2608-2620.	0.9	92
78	KdV–Burgers equation in a new continuum model based on full velocity difference model considering anticipation effect. Physica A: Statistical Mechanics and Its Applications, 2017, 481, 52-59.	1.2	87
79	A lattice hydrodynamic model based on delayed feedback control considering the effect of flow rate difference. Physica A: Statistical Mechanics and Its Applications, 2017, 479, 478-484.	1.2	27
80	An improved lattice hydrodynamic model considering the influence of optimal flux for forward looking sites. Physics Letters, Section A: General, Atomic and Solid State Physics, 2017, 381, 3523-3528.	0.9	19
81	An improved continuum model for traffic flow considering driver's memory during a period of time and numerical tests. Physics Letters, Section A: General, Atomic and Solid State Physics, 2017, 381, 2792-2800.	0.9	39
82	Nonlinear density wave and energy consumption investigation of traffic flow on a curved road. Chinese Physics B, 2017, 26, 110504.	0.7	15
83	The Numerical Analysis of Two-Sided Space-Fractional Wave Equation with Improved Moving Least-Square Ritz Method. Mathematical Problems in Engineering, 2016, 2016, 1-9.	0.6	5
84	A new car-following model with consideration of the velocity difference between the current speed and the historical speed of the leading car. Physica A: Statistical Mechanics and Its Applications, 2016, 464, 267-277.	1.2	38
85	TDGL and mKdV equations for car-following model considering traffic jerk. Nonlinear Dynamics, 2016, 83, 793-800.	2.7	20
86	The study for continuum model considering traffic jerk effect. Nonlinear Dynamics, 2016, 83, 57-64.	2.7	29
87	The Improved Moving Least-Square Ritz Method for the One-Dimensional Sine-Gordon Equation. Mathematical Problems in Engineering, 2014, 2014, 1-10.	0.6	6
88	The approximation for the boundary optimal control problem of Burgers–Fisher equation with constraints. Applied Mathematics and Computation, 2014, 243, 889-898.	1.4	3
89	The reproducing kernel particle method for two-dimensional unsteady heat conduction problems. Computational Mechanics, 2009, 45, 1-10.	2.2	53
90	The meshless method for a two-dimensional parabolic problem with a source parameter. Applied Mathematics and Computation, 2008, 202, 730-737.	1.4	8

#	Article	IF	CITATIONS
91	Error estimates for the finite point method. Applied Numerical Mathematics, 2008, 58, 884-898.	1.2	84
92	Determination of a control parameter in a one-dimensional parabolic equation using the moving least-square approximation. International Journal of Computer Mathematics, 2008, 85, 1363-1373.	1.0	14