
Sara Sattin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5056769/publications.pdf Version: 2024-02-01

SADA SATTIN

#	Article	IF	CITATIONS
1	Conformationally Constrained Sialyl Analogues as New Potential Binders of h D22. ChemBioChem, 2022, 23, .	2.6	3
2	New Chemotypes for the Inhibition of (p)ppGpp Synthesis in the Quest for New Antimicrobial Compounds. Molecules, 2022, 27, 3097.	3.8	3
3	Homology Model of a Catalytically Competent Bifunctional Rel Protein. Frontiers in Molecular Biosciences, 2021, 8, 628596.	3.5	3
4	DC/L-SIGN recognition of spike glycoprotein promotes SARS-CoV-2 trans-infection and can be inhibited by a glycomimetic antagonist. PLoS Pathogens, 2021, 17, e1009576.	4.7	133
5	Chemical and Biophysical Approaches to Allosteric Modulation. European Journal of Organic Chemistry, 2021, 2021, 4245-4259.	2.4	2
6	Analysis of Hsp90 allosteric modulators interactome reveals a potential dual action mode involving mitochondrial MDH2. Bioorganic Chemistry, 2021, 115, 105258.	4.1	1
7	Behavior of glycolylated sialoglycans in the binding pockets of murine and human CD22. IScience, 2021, 24, 101998.	4.1	8
8	When the Others Become Us: A Chemist's Perspective of the COVID-19 Outbreak in Italy. ACS Chemical Biology, 2020, 15, 1279-1281.	3.4	0
9	Interfering with the Sugar Code: Ten Years Later. European Journal of Organic Chemistry, 2020, 2020, 4652-4663.	2.4	12
10	Enhancing Potency and Selectivity of a DCâ€SIGN Glycomimetic Ligand by Fragmentâ€Based Design: Structural Basis. Chemistry - A European Journal, 2019, 25, 14659-14668.	3.3	25
11	Optimised Synthesis of the Bacterial Magic Spot (p)ppGpp Chemosensor PyDPA. ChemBioChem, 2019, 20, 1717-1721.	2.6	5
12	Design of Allosteric Stimulators of the Hsp90 ATPase as New Anticancer Leads. Chemistry - A European Journal, 2017, 23, 5188-5192.	3.3	33
13	Facile access to pseudo-thio-1,2-dimannoside, a new glycomimetic DC-SIGN antagonist. Bioorganic and Medicinal Chemistry, 2017, 25, 5142-5147.	3.0	12
14	Chaperones rescue the energetic landscape of mutant CFTR at single molecule and in cell. Nature Communications, 2017, 8, 398.	12.8	57
15	The small RNA ReaL: a novel regulatory element embedded in the <i>Pseudomonas aeruginosa</i> quorum sensing networks. Environmental Microbiology, 2017, 19, 4220-4237.	3.8	25
16	Synthesis of Functionalized 2â€(4â€Hydroxyphenyl)â€3â€methylbenzofuran Allosteric Modulators of Hsp90 Activity. European Journal of Organic Chemistry, 2016, 2016, 3349-3364.	2.4	17
17	Scaffold Optimisation of Tetravalent Antagonists of the Mannose Binding Lectin. Chemistry - A European Journal, 2016, 22, 3686-3691.	3.3	7
18	Stereoselective innovative synthesis and biological evaluation of new real carba analogues of minimal epitope Manl±(1,2)Man as DC-SIGN inhibitors. RSC Advances, 2016, 6, 89578-89584.	3.6	16

SARA SATTIN

#	Article	IF	CITATIONS
19	Molecular Dynamics Simulations Reveal the Mechanisms of Allosteric Activation of Hsp90 by Designed Ligands. Scientific Reports, 2016, 6, 23830.	3.3	71
20	Linear biocompatible glyco-polyamidoamines as dual action mode virus infection inhibitors with potential as broad-spectrum microbicides for sexually transmitted diseases. Scientific Reports, 2016, 6, 33393.	3.3	10
21	Glycoconjugates and Glycomimetics as Microbial Anti-Adhesives. Trends in Biotechnology, 2016, 34, 483-495.	9.3	59
22	Detection and quantitative analysis of two independent binding modes of a small ligand responsible for DC-SIGN clustering. Organic and Biomolecular Chemistry, 2016, 14, 335-344.	2.8	18
23	Activation of Hsp90 Enzymatic Activity and Conformational Dynamics through Rationally Designed Allosteric Ligands. Chemistry - A European Journal, 2015, 21, 13598-13608.	3.3	65
24	DC-SIGN as a Target for Drug Development Based on Carbohydrates. , 2015, , 379-394.		2
25	A phenol sandwich fights diabetes. Nature Chemical Biology, 2015, 11, 635-636.	8.0	4
26	Pseudo-Mannosylated DC-SIGN Ligands as Potential Adjuvants for HIV Vaccines. Viruses, 2014, 6, 391-403.	3.3	25
27	Synthesis of potential allosteric modulators of Hsp90 by chemical glycosylation of Eupomatenoid-6. Carbohydrate Research, 2014, 390, 33-41.	2.3	12
28	Unique DC-SIGN Clustering Activity of a Small Glycomimetic: A Lesson for Ligand Design. ACS Chemical Biology, 2014, 9, 1377-1385.	3.4	47
29	Structure of a Glycomimetic Ligand in the Carbohydrate Recognition Domain of C-type Lectin DC-SIGN. Structural Requirements for Selectivity and Ligand Design. Journal of the American Chemical Society, 2013, 135, 2518-2529.	13.7	75
30	Giant regular polyhedra from calixarene carboxylates and uranyl. Nature Communications, 2012, 3, 785.	12.8	191
31	Pseudosaccharide Functionalized Dendrimers as Potent Inhibitors of DC-SIGN Dependent Ebola Pseudotyped Viral Infection. Bioconjugate Chemistry, 2011, 22, 1354-1365.	3.6	82
32	Design, synthesis and activity evaluation of mannose-based DC-SIGN antagonists. Molecular Diversity, 2011, 15, 347-360.	3.9	29
33	An assay for functional dendritic cell-specific ICAM-3-grabbing nonintegrin (DC–SIGN) inhibitors of human dendritic cell adhesion. Analytical Biochemistry, 2010, 406, 222-229.	2.4	6
34	Inhibition of DC-SIGN-Mediated HIV Infection by a Linear Trimannoside Mimic in a Tetravalent Presentation. ACS Chemical Biology, 2010, 5, 301-312.	3.4	115
35	1,2-Mannobioside Mimic: Synthesis, DC-SIGN Interaction by NMR and Docking, and Antiviral Activity. ChemMedChem, 2007, 2, 1030-1036.	3.2	73
36	Design and synthesis of glycomimetics. Carbohydrate Chemistry, 0, , 1-25.	0.3	8