Michael Sadovskii

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/505660/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	High-temperature superconductivity in iron-based layered iron compounds. Physics-Uspekhi, 2008, 51, 1201-1227.	2.2	217
2	Pseudogaps in strongly correlated metals: A generalized dynamical mean-field theory approach. Physical Review B, 2005, 72, .	3.2	125
3	Electronic structure of prototype AFe2As2 and ReOFeAs high-temperature superconductors: A comparison. JETP Letters, 2008, 88, 144-149.	1.4	102
4	Superconductivity and localization. Physics Reports, 1997, 282, 225-348.	25.6	84
5	Anderson localization and superconductivity. Journal of Low Temperature Physics, 1985, 59, 89-113.	1.4	70
6	Electronic structure of new LiFeAs high-T c superconductor. JETP Letters, 2008, 88, 543-545.	1.4	65
7	High-temperature superconductivity in transition metal oxypnictides: A rare-earth puzzle?. JETP Letters, 2008, 87, 560-564.	1.4	58
8	Destruction of the Fermi surface due to pseudogap fluctuations in strongly correlated systems. JETP Letters, 2005, 82, 198-203.	1.4	48
9	Electronic structure, topological phase transitions and superconductivity in (K, Cs) x Fe2Se2. JETP Letters, 2011, 93, 166-169.	1.4	48
10	Anion height dependence of T c and the density of states in iron-based superconductors. JETP Letters, 2010, 91, 518-522.	1.4	40
11	Generalized dynamical mean-field theory in the physics of strongly correlated systems. Physics-Uspekhi, 2012, 55, 325-355.	2.2	40
12	Iron based superconductors: Pnictides versus chalcogenides. Journal of Magnetism and Magnetic Materials, 2012, 324, 3481-3486.	2.3	38
13	Self-consistent theory of localization for the Anderson model. European Physical Journal B, 1983, 51, 17-23.	1.5	36
14	Models of the pseudogap state of two-dimensional systems. Journal of Experimental and Theoretical Physics, 1999, 88, 968-979.	0.9	36
15	Consistent LDA' + DMFT—an unambiguous way to avoid double counting problem: NiO test. JETP Letters, 2012, 95, 581-585.	1.4	32
16	Superconducting properties of the atomically disordered MgB2 compound. JETP Letters, 2001, 73, 570-572.	1.4	30
17	Pseudogaps in strongly correlated metals: Optical conductivity within the generalized dynamical mean-field theory approach. Physical Review B, 2007, 75, .	3.2	30
18	High-temperature superconductivity in FeSe monolayers. Physics-Uspekhi, 2016, 59, 947-967.	2.2	29

#	Article	IF	CITATIONS
19	Electronic and magnetic structure of a possible iron based superconductor BaFe2Se3. JETP Letters, 2012, 95, 33-37.	1.4	28
20	Electronic structure of FeSe monolayer superconductors. Low Temperature Physics, 2016, 42, 891-899.	0.6	27
21	Consistent LDA' + DMFT approach to the electronic structure of transition metal oxides: Charge transfer insulators and correlated metals. Journal of Experimental and Theoretical Physics, 2013, 116, 620-634.	0.9	25
22	Mott-Hubbard transition and Anderson localization: A generalized dynamical mean-field theory approach. Journal of Experimental and Theoretical Physics, 2008, 106, 581-596.	0.9	22
23	Pseudogaps: introducing the length scale into dynamical mean-field theory. Low Temperature Physics, 2006, 32, 398-405.	0.6	21
24	Electron localization in disordered systems: critical behavior and macroscopic manifestations. Uspekhi Fizicheskikh Nauk, 1981, 24, 96-115.	0.3	20
25	Electronic structure of new multiple band Pt-pnictide superconductors APt3P. JETP Letters, 2012, 96, 227-230.	1.4	20
26	Reconstruction of the Fermi surface in the pseudogap state of cuprates. JETP Letters, 2008, 88, 192-196.	1.4	18
27	Electronic structure of NaFeAs superconductor: LDA+DMFT calculations compared to the ARPES experiment. JETP Letters, 2015, 102, 26-31.	1.4	18
28	Electronic Structure of FeSe Monolayer Superconductors: Shallow Bands and Correlations. Journal of Experimental and Theoretical Physics, 2018, 126, 485-496.	0.9	18
29	Electronic structure of novel multiple-band superconductor SrPt2As2. JETP Letters, 2010, 92, 751-755.	1.4	17
30	Electronic structure of new iron-based superconductors: From pnictides to chalcogenides and other similar systems. JETP Letters, 2014, 99, 598-612.	1.4	17
31	Non-Fermi-liquid behavior in the fluctuating gap model: From the pole to a zero of the Green's function. Journal of Experimental and Theoretical Physics, 2006, 103, 415-427.	0.9	16
32	Electronic structure of new AFFeAs prototype of iron arsenide superconductors. JETP Letters, 2008, 88, 679-682.	1.4	16
33	Interplay of electron-phonon interaction and strong correlations: <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mtext>DMFT</mml:mtext><mml:mo>+</mml:mo><mml:mi>Σ</mml:mi>Physical Review B. 2009. 80</mml:mrow></mml:math 	nml:mrow	->
34	On the origin of the shallow and "replica―bands in FeSe monolayer superconductors. JETP Letters, 2017, 105, 370-374.	1.4	16
35	Multiple bands: A key to high-temperature superconductivity in iron arsenides?. JETP Letters, 2009, 89, 156-160.	1.4	15
36	Normal phase and superconducting instability in the attractive Hubbard model: a DMFT(NRG) study. Journal of Experimental and Theoretical Physics, 2014, 119, 264-271.	0.9	15

#	Article	IF	CITATIONS
37	The Ginzburg-Landau expansion and the slope of the upper critical field in disordered superconductors. JETP Letters, 1996, 63, 358-364.	1.4	14
38	Antiadiabatic Phonons, Coulomb Pseudopotential, and Superconductivity in Eliashberg—McMillan Theory. JETP Letters, 2019, 109, 166-170.	1.4	14
39	Disordering effects in superconductors with anisotropic pairing: From Cooper pairs to compact bosons. JETP Letters, 1997, 65, 270-275.	1.4	13
40	Two-dimensional Anderson-Hubbard model in the DMFT + Σ approximation. Journal of Experimental and Theoretical Physics, 2010, 110, 325-335.	0.9	13
41	Electronic structure of <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mtext>Pr</mml:mtext></mml:mrow><mml:mrow via ARPES and<mml:math xmlns:mml="http://www.w3.org/1998/Math/. Physical Review B, 2009, 80, .</td><td>> <3112ml:mn</td><td>>22/mml:m</td></mml:mrow </mml:msub></mml:mrow></mml:math>	> < 311 2ml:mn	> 2 2/mml:m
42	Electronic structure of two-dimensional hexagonal diselenides: Charge density waves and pseudogap behavior. Journal of Experimental and Theoretical Physics, 2012, 114, 671-680.	0.9	11
43	LDA'+DMFT investigation of electronic structure of K1 â^' x Fe2 â^' y Se2 superconductor. JETP Letters, 2013, 97, 15-19.	1.4	11
44	Electron–Phonon Coupling in Eliashberg–McMillan Theory Beyond Adiabatic Approximation. Journal of Experimental and Theoretical Physics, 2019, 128, 455-463.	0.9	11
45	Optical conductivity in a 2D model of the pseudogap state. Journal of Experimental and Theoretical Physics, 2002, 95, 526-537.	0.9	10
46	Disorder effects in the BCS-BEC crossover region of the attractive Hubbard model. JETP Letters, 2014, 100, 192-196.	1.4	10
47	Attractive Hubbard model with disorder and the generalized Anderson theorem. Journal of Experimental and Theoretical Physics, 2015, 120, 1055-1063.	0.9	10
48	Planckian relaxation delusion in metals. Physics-Uspekhi, 2021, 64, 175-190.	2.2	10
49	Semiconductor–metal transition in liquid semiconductors. Uspekhi Fizicheskikh Nauk, 1980, 23, 551-575.	0.3	9
50	HIGH Tc STUDIES IN SVERDLOVSK. International Journal of Modern Physics B, 1988, 02, 1331-1379.	2.0	9
51	Superconductivity in spinâ€glasses. Physica Status Solidi (B): Basic Research, 1979, 95, 59-64.	1.5	8
52	The Ginzburg-Landau expansion in the simple model of a superconductor with a pseudogap. Journal of Experimental and Theoretical Physics, 1999, 88, 347-355.	0.9	8
53	Antiadiabatic Phonons and Superconductivity in Eliashberg–McMillan Theory. Journal of Superconductivity and Novel Magnetism, 2020, 33, 19-26.	1.8	8
54	EFFECTS OF LOCALISATION IN ATOMIC-DISORDERED HIGH-Tc SUPERCONDUCTORS. International Journal of Modern Physics B, 1989, 03, 87-92.	2.0	7

#	Article	IF	CITATIONS
55	Localization effects in disordered high-T c superconductors. Physica C: Superconductivity and Its Applications, 1989, 162-164, 1019-1020.	1.2	7
56	Models of the pseudogap state in cuprates. Physica C: Superconductivity and Its Applications, 2000, 341-348, 811-814.	1.2	7
57	Pseudogap behavior in Bi2Ca2SrCu2O8: Results of the generalized dynamical mean-field approach. Journal of Experimental and Theoretical Physics, 2007, 104, 792-804.	0.9	7
58	Origin of "Hot Spots―in the pseudogap regime of Nd1.85Ce0.15CuO4: An LDA + DMFT + Σk study. Journal of Experimental and Theoretical Physics, 2008, 107, 828-838.	0.9	7
59	Doping dependence of correlation effects in K1 â^' x Fe2 â^' y Se2 superconductors: LDA' + DMFT investigation. Journal of Experimental and Theoretical Physics, 2013, 117, 926-932.	0.9	7
60	Electronic and magnetic properties of the new iron-based superconductor [Li1 â^' x Fe x OH]FeSe. JETP Letters, 2015, 101, 47-50.	1.4	7
61	Possibility of Anderson transition in liquid Se and As in the region of high temperatures and pressures. Physics Letters, Section A: General, Atomic and Solid State Physics, 1978, 65, 173-174.	2.1	6
62	Comparative study of electron- and hole-doped high-Tc compounds in pseudogap regime: LDA+DMFT+Σk approach. Journal of Physics and Chemistry of Solids, 2008, 69, 3269-3273.	4.0	6
63	Pseudogap phase of high-Tc compounds described within the LDA+DMFT+Σ approach. Journal of Physics and Chemistry of Solids, 2011, 72, 371-375.	4.0	6
64	Random Bond Ising Model in Selfâ€Avoiding Walk Approximation. Physica Status Solidi (B): Basic Research, 1982, 109, 49-57.	1.5	5
65	Upper critical field of a superconductor near anderson transition. Physica C: Superconductivity and Its Applications, 1991, 185-189, 1477-1478.	1.2	5
66	The Ginzburg-Landau expansion and the slope of the upper critical field in superconductors with anisotropic normal-impurity scattering. Journal of Experimental and Theoretical Physics, 1997, 85, 1162-1167.	0.9	5
67	Combinatorial analysis of Feynman diagrams in problems with a Gaussian random field. Journal of Experimental and Theoretical Physics, 1998, 86, 367-374.	0.9	5
68	Multiple bands – A key to high-temperature superconductivity in iron arsenides?. Physica C: Superconductivity and Its Applications, 2010, 470, S418-S419.	1.2	5
69	Interplay of electron–phonon interaction and strong correlations: DMFT+Σ approach. Journal of Physics and Chemistry of Solids, 2011, 72, 366-370.	4.0	5
70	Comparative study of electronic structure of new superconductors (Sr, Ca)Pd2As2 and related compound BaPd2As2. JETP Letters, 2013, 98, 24-27.	1.4	5
71	DMFT+Σ approach to disordered hubbard model. Journal of Experimental and Theoretical Physics, 2016, 122, 509-524.	0.9	5
72	Hall Effect in a Doped Mott Insulator: DMFT Approximation. JETP Letters, 2022, 115, 402-405.	1.4	5

#	Article	IF	CITATIONS
73	NMR and spin-lattice relaxation rate of89Y,63Cu in radiation disordered YBa2Cu3O6.9. Applied Magnetic Resonance, 1992, 3, 649-663.	1.2	4
74	Ginzburg-Landau expansion and the slope of the upper critical field in disordered superconductors with anisotropic pairing. Physica C: Superconductivity and Its Applications, 1997, 282-287, 1847-1848.	1.2	4
75	Optical conductivity in a simple model of the pseudogap state. Physica C: Superconductivity and Its Applications, 2000, 341-348, 939-940.	1.2	4
76	Superconductivity in a simple model of the pseudogap state. Journal of Experimental and Theoretical Physics, 2000, 90, 535-543.	0.9	4
77	ARPES spectral functions and Fermi surface for La1.86Sr0.14CuO4 compared with LDA + DMFT + Σk calculations. Journal of Experimental and Theoretical Physics, 2010, 110, 989-994.	0.9	4
78	Electronic Structure of NaFeAs Superconductor: LDA + DMFT Calculations Compared with ARPES Experiment. Journal of Superconductivity and Novel Magnetism, 2016, 29, 1117-1122.	1.8	4
79	Attractive Hubbard model: Homogeneous Ginzburg–Landau expansion and disorder. Journal of Experimental and Theoretical Physics, 2016, 122, 375-383.	0.9	4
80	Ginzburg–Landau expansion in BCS–BEC crossover region of disordered attractive Hubbard model. Low Temperature Physics, 2017, 43, 17-26.	0.6	4
81	Temperature Dependence of the Upper Critical Field in Disordered Hubbard Model with Attraction. Journal of Experimental and Theoretical Physics, 2017, 125, 1127-1136.	0.9	4
82	On the Planckian Limit for Inelastic Relaxation in Metals. JETP Letters, 2020, 111, 188-192.	1.4	4
83	LOCALIZATION EFFECTS IN HIGH-TEMPERATURE SUPERCONDUCTORS. Annals of the New York Academy of Sciences, 1990, 581, 207-216.	3.8	3
84	Optical conductivity of high-temperature superconductors: Exact solution for a "spin - bag―model. Physica C: Superconductivity and Its Applications, 1991, 185-189, 1431-1432.	1.2	3
85	Optical conductivity in a simple model of a pseudogap state of a two-dimensional system. JETP Letters, 1999, 69, 483-489.	1.4	3
86	Superconductivity in a toy model of the pseudogap state. Physica C: Superconductivity and Its Applications, 2000, 341-348, 879-882.	1.2	3
87	Superconductivity in the exactly solvable model of pseudogap state: The absence of self-averaging. Journal of Experimental and Theoretical Physics, 2002, 94, 654-663.	0.9	3
88	Superconductivity in the pseudogap state in the hot spot model: The influence of impurities and the phase diagram. Journal of Experimental and Theoretical Physics, 2004, 99, 1264-1278.	0.9	3
89	Pseudogap in normal underdoped phase of Bi2212: LDA+DMFT+Σk. Physica C: Superconductivity and Its Applications, 2007, 460-462, 997-999.	1.2	3
90	Electronic structure and possible pseudogap behavior in iron based superconductors. JETP Letters, 2010, 91, 660-664.	1.4	3

#	Article	IF	CITATIONS
91	Temperature dependence of the upper critical field in high-temperature superconductors: Localization effects. Physica C: Superconductivity and Its Applications, 1994, 235-240, 2621-2622.	1.2	2
92	Superconductivity in the pseudogap state induced by short-order fluctuations. Journal of Experimental and Theoretical Physics, 2001, 92, 480-492.	0.9	2
93	Superconductivity in the pseudogap state in the hot-spot model: Ginzburg-Landau expansion. Journal of Experimental and Theoretical Physics, 2004, 98, 748-759.	0.9	2
94	Destruction of the Fermi surface due to pseudogap fluctuations in correlated systems. Physica C: Superconductivity and Its Applications, 2007, 460-462, 1084-1085.	1.2	2
95	Ginzburg–Landau expansion in strongly disordered attractive Anderson–Hubbard model. Journal of Experimental and Theoretical Physics, 2017, 125, 111-122.	0.9	2
96	Temperature Dependence of Paramagnetic Critical Magnetic Field in Disordered Attractive Hubbard Model. Journal of Experimental and Theoretical Physics, 2018, 127, 753-760.	0.9	2
97	Random Site Ising Model in Selfâ€Avoiding Walk Approximation. Physica Status Solidi (B): Basic Research, 1982, 109, 449-456.	1.5	1
98	The optical sum rule in strongly correlated systems. Journal of Experimental and Theoretical Physics, 2008, 107, 281.	0.9	1
99	Special Issue on the Fundamental Problems of High-Temperature Superconductivity. Journal of Superconductivity and Novel Magnetism, 2016, 29, 1033-1034.	1.8	1
100	Ginzburg-Landau Expansion and the Upper Critical Field in the Disordered Attractive Hubbard Model (Brief Review). JETP Letters, 2020, 112, 555-567.	1.4	1
101	Superconducting Transition Temperature for Very Strong Coupling in the Antiadiabatic Limit of Eliashberg Equations. JETP Letters, 2021, 113, 581-585.	1.4	1
102	Effects of Localisation in Atomic-Disordered High-Tc Superconductors. , 1989, , 463-468.		1
103	Localization effects in high-temperature superconductors. AIP Conference Proceedings, 1990, , .	0.4	0
104	On the theory of "odd-pairing―superconductors. Physica C: Superconductivity and Its Applications, 1994, 235-240, 2403-2404.	1.2	0
105	Disorder effects in superconductors with anisotropic pairing: From Cooper pairs to compact bosons. Physica C: Superconductivity and Its Applications, 1997, 282-287, 1849-1850.	1.2	0
106	Suppression of superconductivity close to the metal-insulator transition in strongly disordered systems. Journal of Experimental and Theoretical Physics, 1997, 85, 104-108.	0.9	0
107	In memory of Viktor Iosifovich Belinicher. Physics-Uspekhi, 2002, 45, 101-102.	2.2	0
108	Yurii Aleksandrovich Izyumov (on his seventieth birthday). Physics-Uspekhi, 2003, 46, 551-552.	2.2	0

0

#	Article	IF	CITATIONS
109	Evgenii Akimovich Turov (on his eightieth birthday). Physics-Uspekhi, 2004, 47, 423-424.	2.2	Ο
110	Optical conductivity in the "hot spots―model of the pseudogap state. Physica C: Superconductivity and Its Applications, 2004, 408-410, 418-419.	1.2	0
111	Electron-Phonon Interaction. , 2006, , 71-99.		Ο
112	E. P. Kruglyakov, Highway "Scientists―2 (Nauka, Moscow, 2006), 335 pp. [in Russian]. Herald of the Russian Academy of Sciences, 2006, 76, 598-599.	0.6	0
113	Title is missing!. Physics-Uspekhi, 2006, 49, 219.	2.2	0
114	Evgenii Grigorievich Maksimov (on his 70th birthday). Physics-Uspekhi, 2008, 51, 1087-1088.	2.2	0
115	Ginzburg as he is in my memory. Herald of the Russian Academy of Sciences, 2010, 80, 569-577.	0.6	0
116	In the memory of Boris Andreevich Volkov. Semiconductors, 2010, 44, 269-270.	0.5	0
117	In memory of Yurii Aleksandrovich Izyumov. Physics-Uspekhi, 2011, 54, 323-324.	2.2	0
118	In memory of Evgenii Grigorievich Maksimov. Physics-Uspekhi, 2011, 54, 1195-1197.	2.2	0
119	Leonid Veniaminovich Keldysh (on his 80th birthday). Physics-Uspekhi, 2011, 54, 435-437.	2.2	0
120	Gennadii Andreevich Mesyats (on his 80th birthday). Physics-Uspekhi, 2016, 59, 211-213.	2.2	0
121	Attractive Hubbard Within the Generalized DMFT: Normal State Properties, Disorder Effects and Superconductivity. Journal of Superconductivity and Novel Magnetism, 2016, 29, 1097-1103.	1.8	0
122	Yurii Moiseevich Kagan (on his 90th birthday). Physics-Uspekhi, 2018, 61, 714-716.	2.2	0
123	In memory of Yurii Moiseevich Kagan. Physics-Uspekhi, 2019, 62, 943-944.	2.2	0
124	Electron-Electron Interaction. , 2006, , 17-69.		0
125	Electronic Instabilities and Phase Transitions. , 2006, , 241-331.		0

126 Electrons in Disordered Systems. , 2006, , 101-176.