Tuna Mutis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5056431/publications.pdf Version: 2024-02-01

Τιινίλ Μιίτις

#	Article	IF	CITATIONS
1	Daratumumab depletes CD38+ immune regulatory cells, promotes T-cell expansion, and skews T-cell repertoire in multiple myeloma. Blood, 2016, 128, 384-394.	1.4	697
2	CD38 expression and complement inhibitors affect response and resistance to daratumumab therapy in myeloma. Blood, 2016, 128, 959-970.	1.4	286
3	Monoclonal antibodies targeting <scp>CD</scp> 38 in hematological malignancies and beyond. Immunological Reviews, 2016, 270, 95-112.	6.0	280
4	Towards effective immunotherapy of myeloma: enhanced elimination of myeloma cells by combination of lenalidomide with the human CD38 monoclonal antibody daratumumab. Haematologica, 2011, 96, 284-290.	3.5	212
5	A Rational Strategy for Reducing On-Target Off-Tumor Effects of CD38-Chimeric Antigen Receptors by Affinity Optimization. Molecular Therapy, 2017, 25, 1946-1958.	8.2	197
6	Preclinical Evidence for the Therapeutic Potential of CD38-Targeted Immuno-Chemotherapy in Multiple Myeloma Patients Refractory to Lenalidomide and Bortezomib. Clinical Cancer Research, 2015, 21, 2802-2810.	7.0	136
7	Pre-clinical evaluation of CD38 chimeric antigen receptor engineered T cells for the treatment of multiple myeloma. Haematologica, 2016, 101, 616-625.	3.5	136
8	Monocytes and Granulocytes Reduce CD38 Expression Levels on Myeloma Cells in Patients Treated with Daratumumab. Clinical Cancer Research, 2017, 23, 7498-7511.	7.0	134
9	Highâ€Parameter Mass Cytometry Evaluation of Relapsed/Refractory Multiple Myeloma Patients Treated with Daratumumab Demonstrates Immune Modulation as a Novel Mechanism of Action. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2019, 95, 279-289.	1.5	117
10	Combined CD28 and 4-1BB Costimulation Potentiates Affinity-tuned Chimeric Antigen Receptor–engineered T Cells. Clinical Cancer Research, 2019, 25, 4014-4025.	7.0	110
11	Reconstructing the human hematopoietic niche in immunodeficient mice: opportunities for studying primary multiple myeloma. Blood, 2012, 120, e9-e16.	1.4	104
12	Daratumumab-mediated lysis of primary multiple myeloma cells is enhanced in combination with the human anti-KIR antibody IPH2102 and lenalidomide. Haematologica, 2015, 100, 263-268.	3.5	96
13	CD38 as a therapeutic target for adult acute myeloid leukemia and T-cell acute lymphoblastic leukemia. Haematologica, 2019, 104, e100-e103.	3.5	90
14	Deep immune profiling of patients treated with lenalidomide and dexamethasone with or without daratumumab. Leukemia, 2021, 35, 573-584.	7.2	67
15	CD38 knockout natural killer cells expressing an affinity optimized CD38 chimeric antigen receptor successfully target acute myeloid leukemia with reduced effector cell fratricide. Haematologica, 2022, 107, 437-445.	3.5	63
16	Feasibility of controlling CD38-CAR T cell activity with a Tet-on inducible CAR design. PLoS ONE, 2018, 13, e0197349.	2.5	60
17	Preclinical activity and determinants of response of the GPRC5DxCD3 bispecific antibody talquetamab in multiple myeloma. Blood Advances, 2021, 5, 2196-2215.	5.2	56
18	Effect of daratumumab on normal plasma cells, polyclonal immunoglobulin levels, and vaccination responses in extensively pre-treated multiple myeloma patients. Haematologica, 2020, 105, e302-e306.	3.5	53

#	Article	IF	CITATIONS
19	Preclinical Activity of JNJ-7957, a Novel BCMA×CD3 Bispecific Antibody for the Treatment of Multiple Myeloma, Is Potentiated by Daratumumab. Clinical Cancer Research, 2020, 26, 2203-2215.	7.0	53
20	Phase 1/2 study of lenalidomide combined with low-dose cyclophosphamide and prednisone in lenalidomide-refractory multiple myeloma. Blood, 2016, 128, 2297-2306.	1.4	49
21	Combining a CAR and a chimeric costimulatory receptor enhances T cell sensitivity to low antigen density and promotes persistence. Science Translational Medicine, 2021, 13, eabh1962.	12.4	49
22	Accessory Cells of the Microenvironment Protect Multiple Myeloma from T-Cell Cytotoxicity through Cell Adhesion-Mediated Immune Resistance. Clinical Cancer Research, 2013, 19, 5591-5601.	7.0	48
23	Immunotherapy in myeloma: how far have we come?. Therapeutic Advances in Hematology, 2019, 10, 204062071882266.	2.5	47
24	Challenges for Immunotherapy in Multiple Myeloma: Bone Marrow Microenvironment-Mediated Immune Suppression and Immune Resistance. Cancers, 2020, 12, 988.	3.7	46
25	Dual Targeting to Overcome Current Challenges in Multiple Myeloma CAR T-Cell Treatment. Frontiers in Oncology, 2020, 10, 1362.	2.8	45
26	Identification of minor histocompatibility antigens based on the 1000 Genomes Project. Haematologica, 2014, 99, 1854-1859.	3.5	43
27	Cereblon loss and up-regulation of c-Myc are associated with lenalidomide resistance in multiple myeloma patients. Haematologica, 2018, 103, e368-e371.	3.5	43
28	Detection of choroid- and retina-antigen reactive CD8+ and CD4+ T lymphocytes in the vitreous fluid of patients with birdshot chorioretinopathy. Human Immunology, 2014, 75, 570-577.	2.4	41
29	Altered Peptide Ligands Revisited: Vaccine Design through Chemically Modified HLA-A2–Restricted T Cell Epitopes. Journal of Immunology, 2014, 193, 4803-4813.	0.8	40
30	Targeted Therapy With Immunoconjugates for Multiple Myeloma. Frontiers in Immunology, 2020, 11, 1155.	4.8	38
31	Epcoritamab induces potent anti-tumor activity against malignant B-cells from patients with DLBCL, FL and MCL, irrespective of prior CD20 monoclonal antibody treatment. Blood Cancer Journal, 2021, 11, 38.	6.2	36
32	Sepantronium bromide (YM155) improves daratumumab-mediated cellular lysis of multiple myeloma cells by abrogation of bone marrow stromal cell-induced resistance. Haematologica, 2016, 101, e339-e342.	3.5	34
33	CD38-targeting antibodies in multiple myeloma: mechanisms of action and clinical experience. Expert Review of Clinical Immunology, 2018, 14, 197-206.	3.0	30
34	Liposomal dexamethasone inhibits tumor growth in an advanced human-mouse hybrid model of multiple myeloma. Journal of Controlled Release, 2019, 296, 232-240.	9.9	27
35	Bone Marrow Mesenchymal Stromal Cells Can Render Multiple Myeloma Cells Resistant to Cytotoxic Machinery of CAR T Cells through Inhibition of Apoptosis. Clinical Cancer Research, 2021, 27, 3793-3803.	7.0	27
36	Preclinical Rationale for Targeting the PD-1/PD-L1 Axis in Combination with a CD38 Antibody in Multiple Myeloma and Other CD38-Positive Malignancies. Cancers, 2020, 12, 3713.	3.7	23

#	Article	IF	CITATIONS
37	Synergistic Action of the Human Inhibitory KIR Antibody IPH2102, and the Human CD38 Antibody Daratumumab to Enhance the Lysis of Primary Multiple Myeloma (MM) Cells in the Bone Marrow Mononuclear Cells (MNCs) From Myeloma Patients. Blood, 2011, 118, 1865-1865.	1.4	23
38	T-cell redirecting bispecific antibodies targeting BCMA for the treatment of multiple myeloma. Oncotarget, 2020, 11, 4076-4081.	1.8	23
39	Rebuilding Human Leukocyte Antigen Class Il–Restricted Minor Histocompatibility Antigen Specificity in Recall Antigen-Specific T Cells by Adoptive T Cell Receptor Transfer: Implications for Adoptive Immunotherapy. Clinical Cancer Research, 2007, 13, 4009-4015.	7.0	22
40	Efficacy and safety of daratumumab combined with all- <i>trans</i> retinoic acid in relapsed/refractory multiple myeloma. Blood Advances, 2021, 5, 5128-5139.	5.2	22
41	Interleukin-17 production and T helper 17 cells in peripheral blood mononuclear cells in response to ocular lysate in patients with birdshot chorioretinopathy. Molecular Vision, 2013, 19, 2606-14.	1.1	21
42	Targeting Alloreactive Donor T-Cells to Hematopoietic System-Restricted Minor Histocompatibility Antigens to Dissect Graft-versus-Leukemia Effects from Graft-versus-Host Disease after Allogeneic Stem Cell Transplantation. International Journal of Hematology, 2003, 78, 208-212.	1.6	20
43	A class II-restricted cytotoxic T-cell clone recognizes a human minor histocompatibility antigen with a restricted tissue distribution. British Journal of Haematology, 2005, 128, 73-81.	2.5	19
44	Lenalidomide combined with low-dose cyclophosphamide and prednisone modulates Ikaros and Aiolos in lymphocytes, resulting in immunostimulatory effects in lenalidomide-refractory multiple myeloma patients. Oncotarget, 2018, 9, 34009-34021.	1.8	17
45	Outcome of allogeneic transplantation in newly diagnosed and relapsed/refractory multiple myeloma: longâ€ŧerm followâ€up in a single institution. European Journal of Haematology, 2016, 97, 479-488.	2.2	15
46	T Cells Specific for an Unconventional Natural Antigen Fail to Recognize Leukemic Cells. Cancer Immunology Research, 2019, 7, 797-804.	3.4	15
47	Toll-Like Receptor (TLR)-1/2 Triggering of Multiple Myeloma Cells Modulates Their Adhesion to Bone Marrow Stromal Cells and Enhances Bortezomib-Induced Apoptosis. PLoS ONE, 2014, 9, e96608.	2.5	15
48	Hexabody-CD38, a Novel CD38 Antibody with a Hexamerization Enhancing Mutation, Demonstrates Enhanced Complement-Dependent Cytotoxicity and Shows Potent Anti-Tumor Activity in Preclinical Models of Hematological Malignancies. Blood, 2019, 134, 3106-3106.	1.4	14
49	Impact of MYC on Anti-Tumor Immune Responses in Aggressive B Cell Non-Hodgkin Lymphomas: Consequences for Cancer Immunotherapy. Cancers, 2020, 12, 3052.	3.7	13
50	Preclinical evidence for an effective therapeutic activity of FL118, a novel survivin inhibitor, in patients with relapsed/refractory multiple myeloma. Haematologica, 2020, 105, e80-e83.	3.5	12
51	Bone Marrow Mesenchymal Stromal Cell-mediated Resistance in Multiple Myeloma Against NK Cells can be Overcome by Introduction of CD38-CAR or TRAIL-variant. HemaSphere, 2021, 5, e561.	2.7	11
52	Efficacy and Safety of Durvalumab Combined with Daratumumab in Daratumumab-Refractory Multiple Myeloma Patients. Cancers, 2021, 13, 2452.	3.7	11
53	Current State of the Art and Prospects of T Cell-Redirecting Bispecific Antibodies in Multiple Myeloma. Journal of Clinical Medicine, 2021, 10, 4593.	2.4	11
54	The Impact and Modulation of Microenvironment-Induced Immune Resistance Against CAR T Cell and Antibody Treatments in Multiple Myeloma. Blood, 2019, 134, 137-137.	1.4	10

#	Article	IF	CITATIONS
55	Potent preclinical activity of HexaBody-DR5/DR5 in relapsed and/or refractory multiple myeloma. Blood Advances, 2021, 5, 2165-2172.	5.2	9
56	Immunomodulatory Effects and Adaptive Immune Response to Daratumumab in Multiple Myeloma. Blood, 2015, 126, 3037-3037.	1.4	9
57	Reducing on-Target Off-Tumor Effects of CD38-Chimeric Antigen Receptors By Affinity Optimization. Blood, 2016, 128, 2170-2170.	1.4	9
58	CD38 Chimeric Antigen Receptor Engineered T Cells As Therapeutic Tools for Multiple Myeloma. Blood, 2014, 124, 4759-4759.	1.4	8
59	High-Parameter Mass Cytometry (CyTOF) Evaluation of Relapsed/Refractory Multiple Myeloma (MM) Pts (Pts) Treated with Daratumumab Supports Immune Modulation As a Novel Mechanism of Action. Blood, 2016, 128, 4521-4521.	1.4	8
60	Mechanisms of Resistance and Determinants of Response of the GPRC5D-Targeting T-Cell Redirecting Bispecific Antibody JNJ-7564 in Multiple Myeloma. Blood, 2020, 136, 8-9.	1.4	6
61	Complete Tumor Regression by Liposomal Bortezomib in a Humanized Mouse Model of Multiple Myeloma. HemaSphere, 2020, 4, e463.	2.7	5
62	In Vitro and In Vivo Efficacy of CD38 Directed Therapy with Daratumumab In the Treatment of Multiple Myeloma. Blood, 2010, 116, 3058-3058.	1.4	4
63	CD38-Targeted Immunochemotherapy Of Multiple Myeloma: Preclinical Evidence For Its Combinatorial Use In Lenalidomide and Bortezomib Refractory/Intolerant MM Patients. Blood, 2013, 122, 277-277.	1.4	4
64	Tumour Escape from CAR-T Cells. , 2022, , 15-22.		4
65	Development of Anti-CD32b Antibodies with Enhanced Fc Function for the Treatment of B and Plasma Cell Malignancies. Molecular Cancer Therapeutics, 2020, 19, 2089-2104.	4.1	3
66	Daratumumab, a Novel Therapeutic Human CD38 Monoclonal Antibody, Induces Killing of Refractory Patient-Derived Multiple Myeloma Cells, Growing in a Novel Humanized Mouse MM Model. Blood, 2012, 120, 940-940.	1.4	3
67	Modulation of CD38 Expression Levels on Multiple Myeloma Tumor Cells By All-Trans Retinoic Acid Improves the Efficacy of the Anti-CD38 Monoclonal Antibody Daratumumab. Blood, 2014, 124, 2096-2096.	1.4	3
68	Proteasome Inhibitors Sensitize Myeloma Cells to T Cell-Mediated Killing. Blood, 2011, 118, 1838-1838.	1.4	3
69	HY antibodies as biomarkers for chronic GVHD. Blood, 2015, 125, 3046-3047.	1.4	2
70	Lenalidomide Maintenance Following Non Myeloablative Allogeneic Stem Cell Transplantation In Patients with Multiple Myeloma: Results of the HOVON 76 Study. Blood, 2010, 116, 3502-3502.	1.4	2
71	Phase 1/2 Trial Of Lenalidomide In Combination With Cyclophosphamide and Prednisone (REP) In Patients With Lenalidomide-Refractory Multiple Myeloma (REPEAT-study). Blood, 2013, 122, 287-287.	1.4	2
72	Bone Marrow Neutralizes Human Regulatory T-Cells to Permit Graft-Versus-Tumor Immunity In Humanized Mice. Blood, 2010, 116, 1017-1017.	1.4	2

#	Article	IF	CITATIONS
73	Lenalidomide Is Highly Effective in Patients with Relapsed Multiple Myeloma Following Allogeneic Stem Cell Transplantation and Increases the Frequency of CD4+FOXP3+ T Cells Blood, 2007, 110, 2722-2722.	1.4	1
74	Towards Effective Immunotherapy of Multiple Myeloma: Enhanced Elimination of Myeloma Cells by Combination of Lenalidomide with the Human CD38 Monoclonal Antibody Daratumumab. Blood, 2010, 116, 3059-3059.	1.4	1
75	Daratumumab, a Novel Human CD38 Monoclonal Antibody for Treatment of Multiple Myeloma, Prevents Intra-Medullary Spreading of Patient Derived Multiple Myeloma Cells Growing in a Humanized Mouse Model. Blood, 2012, 120, 1834-1834.	1.4	1
76	Towards CD38-Targeted Immunochemotherapy of Multiple Myeloma: Significant Improvement of Anti-Myeloma Effects of Lenalidomide, Bortezomib and Dexamethason by CD38-Specific Antibody Daratumumab, Even in Chemotherapy Resistant/Intolerant Patients. Blood, 2012, 120, 4988-4988.	1.4	1
77	Generation of CD4+ Regulatory T Cells by Retroviral Transduction of CD4+CD25â^' T Cells Either with the Full-Length or with a Common Exon-2 Negative Variant of Human Foxp3 Blood, 2005, 106, 3315-3315.	1.4	1
78	Induction of Potent Anti-Tumor Effects by Original and TCR-Redirected CD4 + Cytotoxic T Cells Blood, 2009, 114, 1333-1333.	1.4	1
79	The Human CD38 Monoclonal Antibody Daratumumab Improves the Anti-Myeloma Effect of Lenalidomide with Dexamethasone in Vitro. Blood, 2011, 118, 5106-5106.	1.4	1
80	Potent Synergy between Combination of Chimeric Antigen Receptor (CAR) Therapy Targeting CD19 in Conjunction with Dendritic Cell (DC)/Tumor Fusion Vaccine in Hematological Malignancies. Blood, 2019, 134, 3227-3227.	1.4	1
81	Human CD4+ CD25+ Regulatory T Cells Effectively Control Xenogeneic-GvHD Induced by Autologous T Cells in Rag2â^'/â^' γcâ^'/â^' Immune-Deficient Mice Blood, 2004, 104, 301-301.	1.4	0
82	A Single Nucleotide Polymorphism in CD19 Defines a Novel Target for Immunotherapy of B Cell Malignancies with CD4+ Cytotoxic T Cells Blood, 2007, 110, 1798-1798.	1.4	0
83	Host Dendritic Cell Vaccinations Combined with Donor Lymphocyte Infusions Induce Host and KLH Specific Immunity in Multiple Myeloma Patients Blood, 2009, 114, 2875-2875.	1.4	0
84	Improved Myeloma Targeting by Combination of the Human Anti-CD38 Antibody Daratumumab with Lenalidomide and Bortezomib. Blood, 2010, 116, 3030-3030.	1.4	0
85	A Unique New Humanized Mouse Model for Multiple Myeloma (MM): Opportunities for Studying MM In Its Natural Environment and for Preclinical Testing. Blood, 2010, 116, 981-981.	1.4	0
86	ldentification of New Hematopoietic Minor Histocompatibility Antigen UTA2-1; Ready for Application in Antitumor Immunotherapy. Blood, 2011, 118, 2979-2979.	1.4	0
87	Reconstructing the Human Hematopoietic Niche: Opportunities for Studying Normal and Malignant Hematopoiesis,. Blood, 2011, 118, 3412-3412.	1.4	Ο
88	Microenvironment Shields Myeloma From Adoptive Immunotherapy by Cell Adhesion Mediated Immune Resistance (CAM-IR),. Blood, 2011, 118, 4039-4039.	1.4	0
89	Epigenetic Regulation of Cancer-Testis Antigen Expression in Multiple Myeloma and Correlation with High-Risk Cytogenetics Blood, 2012, 120, 2923-2923.	1.4	0
90	Preclinical Evaluation Of Engineered T Cells In Multiple Myeloma: Uncovering a Mechanism Of Immune Escape. Blood, 2013, 122, 4205-4205.	1.4	0

#	Article	IF	CITATIONS
91	Improved Vaccine Design For Adoptive Immunotherapy In Hematological Malignancies Through Chemically Modified Minor Histocompatibility Antigen Epitopes. Blood, 2013, 122, 5435-5435.	1.4	0
92	The Survivin Suppressant YM155 Overcomes Microenvironment-Mediated Immune Resistance In a Humanized Multiple Myeloma Mouse Model. Blood, 2013, 122, 3250-3250.	1.4	0
93	Increased Frequencies Of Myeloid-Derived Suppressor Cells and Regulatory T-Cells Decrease Response To Donor Lymphocyte Infusions, Independent Of Graft Versus Host Disease In Multiple Myeloma. Blood, 2013, 122, 2005-2005.	1.4	0
94	Identification of Minor Histocompatibility Antigens Based on the 1000 Genomes Project for Application in Therapeutic Dendritic Cell Vaccination. Blood, 2014, 124, 2418-2418.	1.4	0
95	Genetic Mutational Panel Analyses of Extramedullary Relapses in Multiple Myeloma; No Gain of RAS Mutations. Blood, 2015, 126, 4174-4174.	1.4	0
96	High Grade B Cell Lymphoma with MYC and BCL2 and/or BCL6 Rearrangements Treated with DA-EPOCH-R Induction and Nivolumab Consolidation Treatment: Interim Results of the HOVON-152 Phase II Trial. Blood, 2021, 138, 1414-1414.	1.4	0