Ezequiel Pedro Marcos Leiva

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5056389/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Density functional theory study of a graphene sheet modified with titanium in contact with different adsorbates. Physical Review B, 2007, 76, .	1.1	90
2	Collision as a way of forming bimetallic nanoclusters of various structures and chemical compositions. Journal of Chemical Physics, 2005, 123, 184505.	1.2	87
3	Potentiodynamic and AC Impedance Investigation of Anodic Zirconium Oxide Films. Journal of the Electrochemical Society, 1990, 137, 524-530.	1.3	71
4	Interferents for hydrogen storage on a graphene sheet decorated with nickel: A DFT study. International Journal of Hydrogen Energy, 2011, 36, 3537-3546.	3.8	62
5	Assessment of the potential for hydrogen production from renewable resources in Argentina. International Journal of Hydrogen Energy, 2014, 39, 8204-8214.	3.8	61
6	Lithium titanate as anode material for lithium ion batteries: Synthesis, post-treatment and its electrochemical response. Journal of Electroanalytical Chemistry, 2017, 799, 142-155.	1.9	60
7	CO adsorbate on Pt(111) single crystal surfaces. Electrochimica Acta, 1991, 36, 555-561.	2.6	59
8	The origin of the catalysis of hydrogen peroxide reduction by functionalized graphene surfaces: A density functional theory study. Electrochimica Acta, 2010, 56, 523-530.	2.6	57
9	Is Hydrogen Storage Possible in Metal-Doped Graphite 2D Systems in Conditions Found on Earth?. Physical Review Letters, 2011, 107, 158701.	2.9	52
10	Analysis of the potential for hydrogen production in the province of Córdoba, Argentina, from wind resources. International Journal of Hydrogen Energy, 2010, 35, 5952-5956.	3.8	51
11	The effect of adsorbed carbon monoxide on hydrogen adsorption and hydrogen evolution on platinum. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1986, 215, 357-367.	0.3	49
12	The oxygen and chlorine evolution reactions at titanium oxide electrodes modified with platinum. Electrochimica Acta, 1998, 43, 1785-1794.	2.6	43
13	Effect of chain stiffness on the morphology of polyelectrolyte complexes. A Monte Carlo simulation study. Polymer, 2010, 51, 3293-3302.	1.8	43
14	Quantitative Study of Non ovalent Interactions at the Electrode–Electrolyte Interface Using Cyanideâ€Modified Pt(111) Electrodes. ChemPhysChem, 2011, 12, 2230-2234.	1.0	40
15	Energetics of silica lithiation and its applications to lithium ion batteries. Electrochimica Acta, 2018, 259, 1053-1058.	2.6	40
16	The kinetic origin of the Daumas-Hérold model for the Li-ion/graphite intercalation system. Electrochemistry Communications, 2018, 93, 133-137.	2.3	39
17	An embedded atom approach to underpotential deposition phenomena. Surface Science, 1999, 421, 59-72.	0.8	38
18	Comparative study of CO absorbates for different structures of platinum surfaces. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1987, 227, 199-211.	0.3	37

#	Article	IF	CITATIONS
19	Wind and solar hydrogen for the potential production of ammonia in the state of Ceará – Brazil. International Journal of Hydrogen Energy, 2015, 40, 9917-9923.	3.8	36
20	Monte Carlo simulation for the formation and growth of low dimensionality phases during underpotential deposition of Ag on Au(100). Electrochimica Acta, 1999, 45, 699-712.	2.6	35
21	Underpotential deposition: From planar surfaces to nanoparticles. Surface Science, 2015, 631, 23-34.	0.8	35
22	A silica/carbon composite as anode for lithium-ion batteries with a large rate capability: Experiment and theoretical considerations. Electrochimica Acta, 2018, 279, 289-300.	2.6	34
23	Cu underpotential deposition on Au(111) and Au(100). Can this be explained in terms of the energetics of the Cu/Au system?. Electrochimica Acta, 1999, 45, 691-697.	2.6	31
24	Theoretical Considerations of Electrochemical Phase Formation for an Ideal Frank-van der Merwe System. Journal of the Electrochemical Society, 2002, 149, E109.	1.3	31
25	On the generation of metal clusters with the electrochemical scanning tunneling microscope. Surface Science, 2005, 597, 133-155.	0.8	28
26	Thermodynamic considerations and computer simulations on the formation of core-shell nanoparticles under electrochemical conditions. Physical Chemistry Chemical Physics, 2008, 10, 3561.	1.3	28
27	The Influence of Platinum Electrode Surface on the Electroadsorption and Electroâ€Oxidation of Methanol in Acid Solutions. Journal of the Electrochemical Society, 1983, 130, 1305-1312.	1.3	26
28	Aggregation of Casein Micelles by Interactions with Chitosans:Â A Study by Monte Carlo Simulations. Journal of Agricultural and Food Chemistry, 2005, 53, 459-463.	2.4	26
29	Underpotential deposition on free nanoparticles: Its meaning and measurement. Electrochemistry Communications, 2012, 16, 1-5.	2.3	26
30	Kinetic Monte Carlo Study of Electrochemical Growth in a Heteroepitaxial System. Langmuir, 2002, 18, 9087-9094.	1.6	25
31	When do nanowires break? A model for the theoretical study of the long-term stability of monoatomic nanowires. Chemical Physics Letters, 2008, 460, 261-265.	1.2	25
32	Effect of Temperature on The Kinetics of Electrochemical Insertion of Li-Ions into a Graphite Electrode Studied by Kinetic Monte Carlo. Journal of the Electrochemical Society, 2020, 167, 013533.	1.3	25
33	Simulation Study of Pd Submonolayer Films on Au(hkl) and Pt(hkl) and Their Relationship to Underpotential Deposition. Langmuir, 2000, 16, 9539-9546.	1.6	24
34	Relevance of Heterometallic Binding Energy for Metal Underpotential Deposition. Langmuir, 2001, 17, 2219-2227.	1.6	24
35	The basis for the formation of stable metal clusters on an electrode surface. Nanotechnology, 2003, 14, 1009-1013.	1.3	23
36	Comparative Monte Carlo Study of Monolayer Growth in a Heteroepitaxial System in the Presence of Surface Defects. Langmuir, 2003, 19, 10538-10549.	1.6	23

#	Article	IF	CITATIONS
37	Theoretical studies of preparation of core–shell nanoparticles by electrochemical metal deposition. Electrochimica Acta, 2010, 55, 8244-8251.	2.6	23
38	Kinetic Monte Carlo applied to the electrochemical study of the Li-ion graphite system. Electrochimica Acta, 2020, 331, 135439.	2.6	23
39	Kinetic Monte Carlo simulations applied to Li-ion and post Li-ion batteries: a key link in the multi-scale chain. Progress in Energy, 2021, 3, 042001.	4.6	23
40	First Principles Calculations of Mechanical Properties of4,4′-Bipyridine Attached to Au Nanowires. Physical Review Letters, 2005, 95, 045503.	2.9	22
41	Polyelectrolyte Adsorption on a Charged Surface. A Study by Monte Carlo Simulations. Macromolecules, 2007, 40, 7336-7342.	2.2	22
42	Changes in surface stress caused by the adsorption of an epitaxial metal monolayer. Chemical Physics Letters, 2000, 320, 393-397.	1.2	21
43	A combined experimental and theoretical study of the generation of palladium clusters on Au(111) with a scanning tunnelling microscope. Electrochimica Acta, 2003, 48, 1287-1294.	2.6	21
44	Electrodesorption spectra of residues formed on electrochemically modified polycrystalline platinum from carbon dioxide, formic acid, methanol and ethylene glycol adsorption. Electrochimica Acta, 1985, 30, 1111-1114.	2.6	20
45	Contribution of the metal to the capacitance of the double layer: a self-consistent calculation including pseudopotentials. Chemical Physics Letters, 1991, 187, 143-148.	1.2	20
46	First-principles studies of lithium storage in reduced graphite oxide. Electrochimica Acta, 2014, 140, 232-237.	2.6	20
47	Energetic and entropic contributions to the underpotential/overpotential deposition shifts on single crystal surfaces from lattice dynamics. Electrochimica Acta, 2006, 51, 3526-3536.	2.6	19
48	Polyelectrolyte Adsorption on a Charged Surface. Free Energy Calculation from Monte Carlo Simulations Using Jarzynski Equality. Macromolecules, 2008, 41, 8267-8274.	2.2	19
49	Role of metal contacts in the mechanical properties of molecular nanojunctions: Comparativeab initiostudy of Au/1,8-octanedithiol and Au/4,4-bipyridine. Physical Review B, 2010, 81, .	1.1	19
50	Properties of rotating nanoalloys formed by cluster collision: A computer simulation study. Journal of Chemical Physics, 2011, 134, 094701.	1.2	19
51	Shedding Light on the Entropy Change Found for the Transition Stage II→Stage I of Li-Ion Storage in Graphite. Journal of the Electrochemical Society, 2017, 164, A6154-A6157.	1.3	19
52	Thermodynamic derivation and model calculations of the metal underpotential dependence on electron work function differences. Journal of Electroanalytical Chemistry, 1993, 350, 1-14.	1.9	18
53	Comparative Study of Different Alkali (Na, Li) Titanate Substrates as Active Materials for Anodes of Lithium - Ion Batteries. ECS Transactions, 2014, 63, 113-128.	0.3	18
54	Computer simulation of the effective double layer occurring on a catalyst surface under electro-chemical promotion conditions. Journal of Applied Electrochemistry, 2008, 38, 1065-1073.	1.5	17

#	Article	IF	CITATIONS
55	The limits of underpotential deposition in the nanoscale. Electrochemistry Communications, 2012, 21, 14-17.	2.3	17
56	Kinetic Monte Carlo simulation of Pt discontinuous thin film formation adsorbed on Au. Surface Science, 2005, 581, L109-L114.	0.8	16
57	Theory of electrochemical monoatomic nanowires. Physical Review B, 2006, 74, .	1.1	16
58	Atomistic computer simulations on the generation of bimetallic nanoparticles. Faraday Discussions, 2008, 138, 89-104.	1.6	16
59	On the occurrence of stable and supersaturated metastable states in metallic core-shell nanoparticles. Physical Chemistry Chemical Physics, 2010, 12, 4580.	1.3	16
60	A Reversible Molecular Switch Based on the Biphenyl Structure. Journal of Physical Chemistry C, 2013, 117, 25724-25732.	1.5	16
61	Super-Nernstian Shifts of Interfacial Proton-Coupled Electron Transfers: Origin and Effect of Noncovalent Interactions. Journal of Physical Chemistry C, 2016, 120, 15586-15592.	1.5	16
62	Statistical mechanical modeling of the transition Stage II → Stage I of Li-ion storage in graphite. A priori vs induced heterogeneity. Electrochimica Acta, 2017, 245, 569-574.	2.6	16
63	Grand Canonical Monte Carlo Study of Li Intercalation into Graphite. Journal of the Electrochemical Society, 2018, 165, A2019-A2025.	1.3	16
64	Numerical simulations of cyclic voltammetry for lithium-ion intercalation in nanosized systems: finiteness of diffusion versus electrode kinetics. Journal of Solid State Electrochemistry, 2020, 24, 3279-3287.	1.2	16
65	On the catalytic activity of palladium clusters generated with the electrochemical scanning tunnelling microscope. Electrochemistry Communications, 2003, 5, 584-586.	2.3	15
66	On the selective decoration of facets in metallic nanoparticles. Journal of Materials Research, 2012, 27, 1777-1786.	1.2	15
67	Configurational Behavior and Conductance of Alkanedithiol Molecular Wires from Accelerated Dynamics Simulations. Journal of Chemical Theory and Computation, 2012, 8, 4539-4545.	2.3	15
68	In silico and inÂvitro characterization of phospholipase A2 isoforms from soybean (Glycine max). Biochimie, 2012, 94, 2608-2619.	1.3	15
69	An experimental and theoretical approach on the effect of presence of oxygen in milled graphite as lithium storage material. Electrochimica Acta, 2014, 140, 160-167.	2.6	15
70	Study of the natural resource and economic feasibility of the production and delivery of wind hydrogen in the province of Córdoba, Argentina. International Journal of Hydrogen Energy, 2015, 40, 4413-4425.	3.8	15
71	Voltammetric Electroâ€Oxidation of Carbon Monoxide Previously Adsorbed on Electrochemically Modified Platinum Electrodes. Journal of the Electrochemical Society, 1986, 133, 1660-1662.	1.3	14
72	Electrochemical behaviour of passive zirconium alloys. Electrochimica Acta, 1992, 37, 281-287.	2.6	13

#	Article	IF	CITATIONS
73	Model calculations for copper clusters on Au(111) surfaces. Journal of Electroanalytical Chemistry, 2002, 518, 84-90.	1.9	13
74	Monte Carlo simulation of metal deposition on foreign substrates. Surface Science, 2006, 600, 4741-4751.	0.8	13
75	Anchoring sites to the STM tip can explain multiple peaks in single molecule conductance histograms. Physical Chemistry Chemical Physics, 2013, 15, 1526-1531.	1.3	13
76	Criticality of the phase transition on stage two in a lattice-gas model of a graphite anode in a lithium-ion battery. Physical Chemistry Chemical Physics, 2017, 19, 23138-23145.	1.3	13
77	Multiple current components for methanol electrosorption and electro-oxidation at platinum in acidic solutions. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1983, 158, 115-130.	0.3	12
78	Externally Applied Electric Fields on Immiscible Lipid Monolayers:Â Repulsion between Condensed Domains Precludes Domain Migration. Langmuir, 2006, 22, 9664-9670.	1.6	12
79	Thermodynamic stability of electrochemically decorated Au–Pd core@shell nanoparticles. Electrochimica Acta, 2012, 76, 424-429.	2.6	12
80	The influence of solution composition on the kinetics of "reduced―CO2 electrooxidation at polycrystalline platinum. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1985, 189, 257-269.	0.3	11
81	On the Stability of Ag/Au(111) Expanded Structures. Langmuir, 2002, 18, 6628-6632.	1.6	11
82	Effects of tip structure on the generation of metal clusters by an STM tip: a way to control the orientation of nanocrystallites?. Nanotechnology, 2005, 16, 974-980.	1.3	11
83	Substituent Effect on the Mechanical Properties of Auâ~'N Nanojunctions. Journal of Physical Chemistry C, 2009, 113, 3850-3854.	1.5	11
84	A model for underpotential deposition in the presence of anions. Journal of Chemical Physics, 2010, 132, .	1.2	11
85	Coalescence of Nanoclusters Analyzed by Well-Tempered Metadynamics. Comparison with Straightforward Molecular Dynamics. Journal of Chemical Theory and Computation, 2017, 13, 3874-3880.	2.3	11
86	Complex kinetic behaviour of "reduced―CO2 electro-oxidation at Pt electrodes. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1983, 158, 103-114.	0.3	10
87	2D-drop model applied to the calculation of step formation energies on a (111) substrate. Surface Science, 2002, 499, L135-L140.	0.8	10
88	NEMCA effect: why are the work function changes of the gas exposed catalyst-electrode surface one-to-one related to the changes in the catalyst working electrode potential?. Journal of Solid State Electrochemistry, 2003, 7, 588-592.	1.2	10
89	Stochastic model for spontaneous formation of molecular wires. Electrochimica Acta, 2009, 54, 2977-2982.	2.6	10
90	First-principles studies concerning optimization of hydrogen storage in nanoporous reduced graphite oxide. International Journal of Hydrogen Energy, 2014, 39, 4396-4403.	3.8	10

#	Article	IF	CITATIONS
91	Electrochemical, HR-XPS and SERS study of the self-assembly of biphenyl 4,4′-dithiol on Au(111) from solution phase. Surface Science, 2014, 630, 101-108.	0.8	10
92	Kinetic model for the long term stability of contaminated monoatomic nanowires. Physical Review B, 2010, 81, .	1.1	9
93	Curvature effect in the longitudinal unzipping carbon nanotubes. Journal of Solid State Electrochemistry, 2013, 17, 1189-1200.	1.2	9
94	Time Recovery for a Complex Process Using Accelerated Dynamics. Journal of Chemical Theory and Computation, 2015, 11, 1725-1734.	2.3	9
95	Counterion condensation on polyelectrolyte chains adsorbed on charged surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 487, 49-57.	2.3	9
96	MoÃ ⁻ se HaÃ ⁻ ssinsky: The Discoverer of Underpotential Deposition. ChemElectroChem, 2018, 5, 849-854.	1.7	9
97	A jellium/point dipoles model for water adsorption on Ag(110). Surface Science, 1990, 227, L121-1124.	0.8	8
98	Spontaneous Nanoripple Formation on Metallic Templates. ACS Nano, 2008, 2, 2531-2539.	7.3	8
99	A Straightforward Approach for the Determination of the Maximum Time Step for the Simulation of Nanometric Metallic Systems. Journal of Chemical Theory and Computation, 2012, 8, 1744-1749.	2.3	8
100	Computer simulation of adsorption on nanoparticles: The case of attractive interactions. Physical Review E, 2012, 86, 061602.	0.8	8
101	Stretching single atom contacts at multiple subatomic step-length. Physical Chemistry Chemical Physics, 2013, 15, 12459.	1.3	8
102	Non-covalent interactions at electrochemical interfaces: one model fits all?. Physical Chemistry Chemical Physics, 2014, 16, 14281-14286.	1.3	8
103	Monomolecular adsorption on nanoparticles with repulsive interactions: a Monte Carlo study. Physical Chemistry Chemical Physics, 2016, 18, 14610-14618.	1.3	8
104	Modeling of lithium-ion batteries is becoming viral: where to go?. Journal of Solid State Electrochemistry, 2020, 24, 2117-2120.	1.2	8
105	Semi-empirical calculations of the vibrational frequency of carbon monoxide adsorbed on noble metal single-crystal surfaces. Journal of Electroanalytical Chemistry, 1993, 351, 65-79.	1.9	7
106	Inclusion of symmetry for the enhanced determination of crystalline structures from powder diffraction data using simulated annealing. Chemical Communications, 1998, , 255-256.	2.2	7
107	Simulated annealing prediction of the crystal structure of ternary inorganic compounds using symmetry restrictions â€. Dalton Transactions RSC, 2000, , 4258-4262.	2.3	7
108	Low-dimensional metallic nanostructures and their electrochemical relevance: Energetics and phenomenological approach. Surface Science, 2006, 600, 4475-4483.	0.8	7

#	Article	IF	CITATIONS
109	Improving the polysulfide barrier by efficient carbon nanofibers coating on separator/cathode for Li-S batteries. Journal of Solid State Electrochemistry, 2020, 24, 2341-2351.	1.2	7
110	Sodiation Of Hard Carbon: How Separating Enthalpy And Entropy Contributions Can Find Transitions Hidden In The Voltage Profile. ChemPhysChem, 2022, 23, .	1.0	7
111	Theoretical Study about the Adsorption of Lead on (111), (100), (110) Monocrystalline Surfaces of Gold. Zeitschrift Fur Physikalische Chemie, 1994, 185, 33-50.	1.4	6
112	Monte Carlo simulation of cluster growth in surface defects induced by the tip of a scanning tunnelling microscope. Surface Science, 2004, 571, L319-L324.	0.8	6
113	Monte Carlo Simulation of Properties of Monolayers and Metal Islands Adsorbed on Metallic (111) Surfaces. Langmuir, 2004, 20, 4279-4288.	1.6	6
114	Reversible Precipitation of Casein Micelles with a Cationic Hydroxyethylcellulose. Journal of Agricultural and Food Chemistry, 2005, 53, 9031-9038.	2.4	6
115	Thermodynamics of Nanoparticle Coalescence at Different Temperatures via Well-Tempered Metadynamics. Journal of Physical Chemistry C, 2020, 124, 24009-24016.	1.5	6
116	Role of the solvent in the activation of Li ₂ S as cathode material: a DFT study. Journal of Physics Condensed Matter, 2021, 33, 344003.	0.7	6
117	On how interactions influence kinetic limitations in alkali-ion batteries. Application to Li-ion intercalation into graphite through voltammetric experiments. Journal of Solid State Electrochemistry, 2021, 25, 2793-2806.	1.2	6
118	Voltammetric Behaviour of LMO at the Nanoscale: A Map of Reversibility and Diffusional Limitations. ChemPhysChem, 2022, 23, .	1.0	6
119	Fast charging of alkali-ion batteries at the single-particle level: the impact of particle geometry on diffusional and kinetic bottlenecks in voltammetry. Journal of Solid State Electrochemistry, 2022, 26, 1995-2003.	1.2	6
120	The behavior of single-molecule junctions predicted by atomistic simulations. Electrochemistry Communications, 2009, 11, 987-989.	2.3	5
121	Mechanical Effects on the Electronic Properties of a Biphenyl-Based Molecular Switch. Journal of Physical Chemistry C, 2015, 119, 5090-5097.	1.5	5
122	Fractional and integer stages of lithium ion–graphite systems: the role of electrostatic and elastic contributions. Physical Chemistry Chemical Physics, 2020, 22, 16174-16183.	1.3	5
123	An extended Hückel/point dipole model for the calculation of dipole potentials for sp metals. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1991, 303, 55-63.	0.3	4
124	Computer simulation and detailed mean-field approximation applied to adsorption on nanoparticles. Physical Review E, 2013, 88, 062407.	0.8	4
125	A new model for the prediction of oxygen interference in hydrogen storage systems. International Journal of Hydrogen Energy, 2014, 39, 5899-5905.	3.8	4
126	A New Approach for the Calculation on the Entropic and Free Energy Contributions to Underpotential Deposition. ECS Transactions, 2014, 58, 3-20.	0.3	4

#	Article	IF	CITATIONS
127	New kinetic insight into the spontaneous oxidation process of lithium in air by EPMA. Applied Surface Science, 2016, 383, 64-70.	3.1	4
128	Underpotential Deposition and Related Phenomena at the Nanoscale: Theory and Applications. Monographs in Electrochemistry, 2016, , 277-334.	0.2	4
129	Hydrogen Evolution Reaction on Nanostructures Electrodes—a Scenario on Stepped Silver Surfaces. Electrocatalysis, 2017, 8, 587-593.	1.5	4
130	Characterization of amorphous Li _x Si structures from ReaxFF <i>via</i> accelerated exploration of local minima. Physical Chemistry Chemical Physics, 2021, 23, 16776-16784.	1.3	4
131	On the Reasons for Stepwise Changes in the Tunneling Current across Metallic Nanogaps. Nano Letters, 2003, 3, 1633-1637.	4.5	3
132	Diffusion mechanisms taking place at the early stages of cobalt deposition on Au(111). Journal of Physics Condensed Matter, 2008, 20, 265010.	0.7	3
133	Monte Carlo simulation of elongating metallic nanowires in the presence of surfactants. Journal of Chemical Physics, 2015, 143, 244702.	1.2	3
134	The Role of Tris(2-carboxyethyl)phosphine Reducing Agent in the Controlled Formation of α,ω-Alkanedithiols Monolayers on Au(111) with Monocoordinated and Bicoordinated Configurations. Langmuir, 2016, 32, 9428-9436.	1.6	3
135	Off lattice Monte-Carlo simulations of low-dimensional surface defects and metal deposits on Pt(111). Electrochemistry Communications, 2005, 7, 472-476.	2.3	2
136	Simulation of selective thermodynamic deposition in nanoholes. Physical Chemistry Chemical Physics, 2017, 19, 1601-1609.	1.3	2
137	On the effect of the carbonaceous substrate in the nucleation of Sn nanoparticles for Li-ion anodes: experiments and first principles calculations. Journal of Solid State Electrochemistry, 2018, 22, 1721-1733.	1.2	2
138	Computer Simulations of Electrochemical Low-Dimensional Metal Phase Formation. , 0, , 30-60.		1
139	Comment on "Surface thermodynamics reconsidered. Derivation of the Gokhshtein relations from the Gibbs potential; and a new approach to surface stress―by Stephen Fletcher. Journal of Solid State Electrochemistry, 2014, 18, 2837-2839.	1.2	1
140	Computational study of nanostructured materials. Current Opinion in Electrochemistry, 2017, 1, 1-6.	2.5	1
141	Surface Reactivity of Lithium (Poly)sulfides in a Polarizable Environment from First Principles. Topics in Catalysis, 2022, 65, 966-978.	1.3	1
142	What Is Coming Next?. Monographs in Electrochemistry, 2016, , 335-348.	0.2	0
143	Modeling of Metal Electrodeposition at the Nanoscale. , 2015, , 1-34.		0

144 Modeling of Metal Electrodeposition at the Nanoscale. , 2016, , 971-1009.

0