Anna S. Von Der Heydt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5056225/publications.pdf

Version: 2024-02-01

76 papers

2,993 citations

218677 26 h-index 52 g-index

142 all docs

 $\begin{array}{c} 142 \\ \\ \text{docs citations} \end{array}$

142 times ranked

3482 citing authors

#	Article	IF	CITATIONS
1	Fragmented tipping in a spatially heterogeneous world. Environmental Research Letters, 2022, 17, 045006.	5.2	14
2	Warm mid-Pliocene conditions without high climate sensitivity: the CCSM4-Utrecht (CESM 1.0.5) contribution to the PlioMIP2. Climate of the Past, 2022, 18, 657-679.	3.4	9
3	Pliocene evolution of the tropical Atlantic thermocline depth. Climate of the Past, 2022, 18, 961-973.	3.4	1
4	Sedimentary microplankton distributions are shaped by oceanographically connected areas. Earth System Dynamics, 2022, 13, 357-371.	7.1	3
5	Can the Miocene climate inform the future?. Science, 2022, 377, 26-27.	12.6	1
6	Effect of the Atlantic Meridional Overturning Circulation on atmospheric <i>p</i> CO ₂ variations. Earth System Dynamics, 2022, 13, 1041-1058.	7.1	1
7	Quantification and interpretation of the climate variability record. Global and Planetary Change, 2021, 197, 103399.	3.5	24
8	Multivariate Estimations of Equilibrium Climate Sensitivity From Short Transient Warming Simulations. Geophysical Research Letters, 2021, 48, e2020GL091090.	4.0	3
9	Rationale and remit of Oxford Open Climate Change. Oxford Open Climate Change, 2021, 1, .	1.3	1
10	The Eocene–Oligocene transition: a review of marine and terrestrial proxy data, models and model–data comparisons. Climate of the Past, 2021, 17, 269-315.	3.4	90
11	Mid-Pliocene Atlantic Meridional Overturning Circulation simulated in PlioMIP2. Climate of the Past, 2021, 17, 529-543.	3.4	20
12	Simulating Miocene Warmth: Insights From an Opportunistic Multiâ€Model Ensemble (MioMIP1). Paleoceanography and Paleoclimatology, 2021, 36, e2020PA004054.	2.9	52
13	The Atlantic's freshwater budget under climate change in the Community Earth System Model with strongly eddying oceans. Ocean Science, 2021, 17, 729-754.	3.4	7
14	Mid-Pliocene West African Monsoon rainfall as simulated in the PlioMIP2 ensemble. Climate of the Past, 2021, 17, 1777-1794.	3.4	10
15	Effects of strongly eddying oceans on multidecadal climate variability in the Community Earth System Model. Ocean Science, 2021, 17, 1251-1271.	3.4	7
16	Projections of the Transient Stateâ€Dependency of Climate Feedbacks. Geophysical Research Letters, 2021, 48, e2021GL094670.	4.0	5
17	Reduced El Ni $\tilde{A}\pm o$ variability in the mid-Pliocene according to the PlioMIP2 ensemble. Climate of the Past, 2021, 17, 2427-2450.	3.4	10
18	Evaluating the large-scale hydrological cycle response within the Pliocene Model Intercomparison Project Phase 2 (PlioMIP2) ensemble. Climate of the Past, 2021, 17, 2537-2558.	3.4	21

#	Article	IF	Citations
19	Extreme Sensitivity and Climate Tipping Points. Journal of Statistical Physics, 2020, 179, 1531-1552.	1.2	14
20	Resolution dependency of sinking Lagrangian particles in ocean general circulation models. PLoS ONE, 2020, 15, e0238650.	2.5	18
21	An Assessment of Earth's Climate Sensitivity Using Multiple Lines of Evidence. Reviews of Geophysics, 2020, 58, e2019RG000678.	23.0	498
22	Lessons from a high-CO ₂ world: an ocean view from  â^⅓ 3Æyears ago. Climate of the Past, 2020, 16, 1599-1615.	Àmillion 3.4	52
23	The Pliocene Model Intercomparison Project Phase 2: large-scale climate features and climate sensitivity. Climate of the Past, 2020, 16, 2095-2123.	3.4	93
24	Evaluation of Arctic warming in mid-Pliocene climate simulations. Climate of the Past, 2020, 16, 2325-2341.	3.4	21
25	The middle to late Eocene greenhouse climate modelled using the CESM 1.0.5. Climate of the Past, 2020, 16, 2573-2597.	3.4	34
26	Resolution dependency of sinking Lagrangian particles in ocean general circulation models., 2020, 15, e0238650.		0
27	Resolution dependency of sinking Lagrangian particles in ocean general circulation models. , 2020, 15, e0238650.		0
28	Resolution dependency of sinking Lagrangian particles in ocean general circulation models. , 2020, 15 , e0238650.		0
29	Resolution dependency of sinking Lagrangian particles in ocean general circulation models. , 2020, 15, e0238650.		0
30	Resolution dependency of sinking Lagrangian particles in ocean general circulation models., 2020, 15, e0238650.		0
31	Resolution dependency of sinking Lagrangian particles in ocean general circulation models. , 2020, 15, e0238650.		0
32	Effects of Periodic Forcing on a Paleoclimate Delay Model. SIAM Journal on Applied Dynamical Systems, 2019, 18, 1060-1077.	1.6	4
33	Transport Bias by Ocean Currents in Sedimentary Microplankton Assemblages: Implications for Paleoceanographic Reconstructions. Paleoceanography and Paleoclimatology, 2019, 34, 1178-1194.	2.9	32
34	What can Palaeoclimate Modelling do for you?. Earth Systems and Environment, 2019, 3, 1-18.	6.2	47
35	Multiple states in the late Eocene ocean circulation. Global and Planetary Change, 2018, 163, 18-28.	3.5	16
36	Comparing Climate Sensitivity, Past and Present. Annual Review of Marine Science, 2018, 10, 261-288.	11.6	28

#	Article	IF	CITATIONS
37	Cascading transitions in the climate system. Earth System Dynamics, 2018, 9, 1243-1260.	7.1	34
38	Chaotic and non-chaotic response to quasiperiodic forcing: limits to predictability of ice ages paced by Milankovitch forcing. Dynamics and Statistics of the Climate System, 2018, 3, .	0.8	4
39	El Niño–Southern Oscillation–like variability in a late Miocene Caribbean coral. Geology, 2017, 45, 643-646.	4.4	3
40	A Stateâ€Dependent Quantification of Climate Sensitivity Based on Paleodata of the Last 2.1ÂMillion Years. Paleoceanography, 2017, 32, 1102-1114.	3.0	13
41	The DeepMIP contribution to PMIP4: experimental design for model simulations of the EECO, PETM, and pre-PETM (version 1.0). Geoscientific Model Development, 2017, 10, 889-901.	3.6	90
42	Model simulations of early westward flow across the Tasman Gateway during the early Eocene. Climate of the Past, 2016, 12, 807-817.	3.4	20
43	Reconstructing geographical boundary conditions for palaeoclimate modelling during the Cenozoic. Climate of the Past, 2016, 12, 1635-1644.	3.4	41
44	State dependence of climate sensitivity: attractor constraints and palaeoclimate regimes. Dynamics and Statistics of the Climate System, 2016, 1, .	0.8	3
45	Effects of Drake Passage on a strongly eddying global ocean. Paleoceanography, 2016, 31, 564-581.	3.0	22
46	Lessons on Climate Sensitivity From Past Climate Changes. Current Climate Change Reports, 2016, 2, 148-158.	8.6	42
47	Coherent Tropical Indo-Pacific Interannual Climate Variability. Journal of Climate, 2016, 29, 4269-4291.	3.2	14
48	On the state dependency of the equilibrium climate sensitivity during the last 5 million years. Climate of the Past, 2015, 11, 1801-1823.	3.4	36
49	Emplacement of Antarctic ice sheet mass affects circumpolar ocean flow. Global and Planetary Change, 2014, 118, 16-24.	3.5	18
50	On the state dependency of fast feedback processes in (paleo) climate sensitivity. Geophysical Research Letters, 2014, 41, 6484-6492.	4.0	30
51	The role of ocean gateways on cooling climate on long time scales. Global and Planetary Change, 2014, 119, 1-22.	3.5	80
52	Dipoles of the South East Madagascar Current. Geophysical Research Letters, 2013, 40, 558-562.	4.0	36
53	Does Net E â^ P Set a Preference for North Atlantic Sinking?. Journal of Physical Oceanography, 2012, 42, 1781-1792.	1.7	5
54	Making sense of palaeoclimate sensitivity. Nature, 2012, 491, 683-691.	27.8	247

#	Article	lF	Citations
55	The impact of ocean gateways on ENSO variability in the Miocene. Geological Society Special Publication, 2011, 355, 305-318.	1.3	12
56	A new mechanism for the two-step Î' ¹⁸ O signal at the Eocene-Oligocene boundary. Climate of the Past, 2011, 7, 235-247.	3.4	14
57	Cold tongue/Warm pool and ENSO dynamics in the Pliocene. Climate of the Past, 2011, 7, 903-915.	3.4	20
58	El Niño in the Pliocene. Nature Geoscience, 2011, 4, 502-503.	12.9	4
59	Evidence for active El Niño Southern Oscillation variability in the Late Miocene greenhouse climate. Geology, 2010, 38, 419-422.	4.4	42
60	Modeling the influence of a reduced equator-to-pole sea surface temperature gradient on the distribution of water isotopes in the Early/Middle Eocene. Earth and Planetary Science Letters, 2010, 298, 57-65.	4.4	57
61	North Atlantic Multidecadal Climate Variability: An Investigation of Dominant Time Scales and Processes. Journal of Climate, 2010, 23, 3626-3638.	3.2	133
62	Noise-Induced Multidecadal Variability in the North Atlantic: Excitation of Normal Modes. Journal of Physical Oceanography, 2009, 39, 220-233.	1.7	49
63	Robustness of multiple equilibria in the global ocean circulation. Geophysical Research Letters, 2009, 36, .	4.0	13
64	The effect of gateways on ocean circulation patterns in the Cenozoic. Global and Planetary Change, 2008, 62, 132-146.	3. 5	25
65	Subâ€surface signatures of the Atlantic Multidecadal Oscillation. Geophysical Research Letters, 2008, 35, .	4.0	51
66	A stochastic dynamical systems view of the Atlantic Multidecadal Oscillation. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2008, 366, 2543-2558.	3.4	27
67	Localization of Multidecadal Variability. Part I: Cross-Equatorial Transport and Interbasin Exchange. Journal of Physical Oceanography, 2007, 37, 2401-2414.	1.7	9
68	Localization of Multidecadal Variability. Part II: Spectral Origin of Multidecadal Modes. Journal of Physical Oceanography, 2007, 37, 2415-2428.	1.7	3
69	Effect of ocean gateways on the global ocean circulation in the late Oligocene and early Miocene. Paleoceanography, 2006, 21, n/a-n/a.	3.0	122
70	Flow reorganizations in the Panama Seaway: A cause for the demise of Miocene corals?. Geophysical Research Letters, 2005, 32, .	4.0	35
71	Response maxima in modulated turbulence. II. Numerical simulations. Physical Review E, 2003, 68, 066302.	2.1	12
72	Response maxima in modulated turbulence. Physical Review E, 2003, 67, 046308.	2.1	21

#	Article	IF	CITATIONS
73	Scaling exponents in weakly anisotropic turbulence from the Navier–Stokes equation. Journal of Fluid Mechanics, 2001, 440, 381-390.	3.4	12
74	Optical near-field excitation at the semiconductor band edge: Field distributions, anisotropic transitions and quadrupole enhancement. Journal of Chemical Physics, 2000, 112, 7831-7838.	3.0	7
75	How Snapping Shrimp Snap: Through Cavitating Bubbles. Science, 2000, 289, 2114-2117.	12.6	378
76	The Mid-Pleistocene Transition induced by delayed feedback and bistability. Dynamics and Statistics of the Climate System, $0,$	0.8	6