
Anna S. Von Der Heydt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5056225/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	An Assessment of Earth's Climate Sensitivity Using Multiple Lines of Evidence. Reviews of Geophysics, 2020, 58, e2019RC000678.	23.0	498
2	How Snapping Shrimp Snap: Through Cavitating Bubbles. Science, 2000, 289, 2114-2117.	12.6	378
3	Making sense of palaeoclimate sensitivity. Nature, 2012, 491, 683-691.	27.8	247
4	North Atlantic Multidecadal Climate Variability: An Investigation of Dominant Time Scales and Processes. Journal of Climate, 2010, 23, 3626-3638.	3.2	133
5	Effect of ocean gateways on the global ocean circulation in the late Oligocene and early Miocene. Paleoceanography, 2006, 21, n/a-n/a.	3.0	122
6	The Pliocene Model Intercomparison Project Phase 2: large-scale climate features and climate sensitivity. Climate of the Past, 2020, 16, 2095-2123.	3.4	93
7	The DeepMIP contribution to PMIP4: experimental design for model simulations of the EECO, PETM, and pre-PETM (version 1.0). Geoscientific Model Development, 2017, 10, 889-901.	3.6	90
8	The Eocene–Oligocene transition: a review of marine and terrestrial proxy data, models and model–data comparisons. Climate of the Past, 2021, 17, 269-315.	3.4	90
9	The role of ocean gateways on cooling climate on long time scales. Global and Planetary Change, 2014, 119, 1-22.	3.5	80
10	Modeling the influence of a reduced equator-to-pole sea surface temperature gradient on the distribution of water isotopes in the Early/Middle Eocene. Earth and Planetary Science Letters, 2010, 298, 57-65.	4.4	57
11	Simulating Miocene Warmth: Insights From an Opportunistic Multiâ€Model Ensemble (MioMIP1). Paleoceanography and Paleoclimatology, 2021, 36, e2020PA004054.	2.9	52
12	Lessons from a high-CO ₂ world: an ocean view from  â^1⁄4 3Â years ago. Climate of the Past, 2020, 16, 1599-1615.	Amjilion	52
13	Subâ€surface signatures of the Atlantic Multidecadal Oscillation. Geophysical Research Letters, 2008, 35, .	4.0	51
14	Noise-Induced Multidecadal Variability in the North Atlantic: Excitation of Normal Modes. Journal of Physical Oceanography, 2009, 39, 220-233.	1.7	49
15	What can Palaeoclimate Modelling do for you?. Earth Systems and Environment, 2019, 3, 1-18.	6.2	47
16	Evidence for active El Niño Southern Oscillation variability in the Late Miocene greenhouse climate. Geology, 2010, 38, 419-422.	4.4	42
17	Lessons on Climate Sensitivity From Past Climate Changes. Current Climate Change Reports, 2016, 2, 148-158.	8.6	42
18	Reconstructing geographical boundary conditions for palaeoclimate modelling during the Cenozoic. Climate of the Past, 2016, 12, 1635-1644.	3.4	41

ANNA S. VON DER HEYDT

#	Article	IF	CITATIONS
19	Dipoles of the South East Madagascar Current. Geophysical Research Letters, 2013, 40, 558-562.	4.0	36
20	On the state dependency of the equilibrium climate sensitivity during the last 5 million years. Climate of the Past, 2015, 11, 1801-1823.	3.4	36
21	Flow reorganizations in the Panama Seaway: A cause for the demise of Miocene corals?. Geophysical Research Letters, 2005, 32, .	4.0	35
22	Cascading transitions in the climate system. Earth System Dynamics, 2018, 9, 1243-1260.	7.1	34
23	The middle to late Eocene greenhouse climate modelled using the CESM 1.0.5. Climate of the Past, 2020, 16, 2573-2597.	3.4	34
24	Transport Bias by Ocean Currents in Sedimentary Microplankton Assemblages: Implications for Paleoceanographic Reconstructions. Paleoceanography and Paleoclimatology, 2019, 34, 1178-1194.	2.9	32
25	On the state dependency of fast feedback processes in (paleo) climate sensitivity. Geophysical Research Letters, 2014, 41, 6484-6492.	4.0	30
26	Comparing Climate Sensitivity, Past and Present. Annual Review of Marine Science, 2018, 10, 261-288.	11.6	28
27	A stochastic dynamical systems view of the Atlantic Multidecadal Oscillation. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2008, 366, 2543-2558.	3.4	27
28	The effect of gateways on ocean circulation patterns in the Cenozoic. Global and Planetary Change, 2008, 62, 132-146.	3.5	25
29	Quantification and interpretation of the climate variability record. Global and Planetary Change, 2021, 197, 103399.	3.5	24
30	Effects of Drake Passage on a strongly eddying global ocean. Paleoceanography, 2016, 31, 564-581.	3.0	22
31	Response maxima in modulated turbulence. Physical Review E, 2003, 67, 046308.	2.1	21
32	Evaluation of Arctic warming in mid-Pliocene climate simulations. Climate of the Past, 2020, 16, 2325-2341.	3.4	21
33	Evaluating the large-scale hydrological cycle response within the Pliocene Model Intercomparison Project Phase 2 (PlioMIP2) ensemble. Climate of the Past, 2021, 17, 2537-2558.	3.4	21
34	Cold tongue/Warm pool and ENSO dynamics in the Pliocene. Climate of the Past, 2011, 7, 903-915.	3.4	20
35	Model simulations of early westward flow across the Tasman Gateway during the early Eocene. Climate of the Past, 2016, 12, 807-817.	3.4	20
36	Mid-Pliocene Atlantic Meridional Overturning Circulation simulated in PlioMIP2. Climate of the Past, 2021, 17, 529-543.	3.4	20

ANNA S. VON DER HEYDT

#	Article	IF	CITATIONS
37	Emplacement of Antarctic ice sheet mass affects circumpolar ocean flow. Global and Planetary Change, 2014, 118, 16-24.	3.5	18
38	Resolution dependency of sinking Lagrangian particles in ocean general circulation models. PLoS ONE, 2020, 15, e0238650.	2.5	18
39	Multiple states in the late Eocene ocean circulation. Global and Planetary Change, 2018, 163, 18-28.	3.5	16
40	A new mechanism for the two-step Î ¹⁸ O signal at the Eocene-Oligocene boundary. Climate of the Past, 2011, 7, 235-247.	3.4	14
41	Coherent Tropical Indo-Pacific Interannual Climate Variability. Journal of Climate, 2016, 29, 4269-4291.	3.2	14
42	Extreme Sensitivity and Climate Tipping Points. Journal of Statistical Physics, 2020, 179, 1531-1552.	1.2	14
43	Fragmented tipping in a spatially heterogeneous world. Environmental Research Letters, 2022, 17, 045006.	5.2	14
44	Robustness of multiple equilibria in the global ocean circulation. Geophysical Research Letters, 2009, 36, .	4.0	13
45	A Stateâ€Dependent Quantification of Climate Sensitivity Based on Paleodata of the Last 2.1ÂMillion Years. Paleoceanography, 2017, 32, 1102-1114.	3.0	13
46	Scaling exponents in weakly anisotropic turbulence from the Navier–Stokes equation. Journal of Fluid Mechanics, 2001, 440, 381-390.	3.4	12
47	Response maxima in modulated turbulence. II. Numerical simulations. Physical Review E, 2003, 68, 066302.	2.1	12
48	The impact of ocean gateways on ENSO variability in the Miocene. Geological Society Special Publication, 2011, 355, 305-318.	1.3	12
49	Mid-Pliocene West African Monsoon rainfall as simulated in the PlioMIP2 ensemble. Climate of the Past, 2021, 17, 1777-1794.	3.4	10
50	Reduced El Niño variability in the mid-Pliocene according to the PlioMIP2 ensemble. Climate of the Past, 2021, 17, 2427-2450.	3.4	10
51	Localization of Multidecadal Variability. Part I: Cross-Equatorial Transport and Interbasin Exchange. Journal of Physical Oceanography, 2007, 37, 2401-2414.	1.7	9
52	Warm mid-Pliocene conditions without high climate sensitivity: the CCSM4-Utrecht (CESM 1.0.5) contribution to the PlioMIP2. Climate of the Past, 2022, 18, 657-679.	3.4	9
53	Optical near-field excitation at the semiconductor band edge: Field distributions, anisotropic transitions and quadrupole enhancement. Journal of Chemical Physics, 2000, 112, 7831-7838.	3.0	7
54	The Atlantic's freshwater budget under climate change in the Community Earth System Model with strongly eddying oceans. Ocean Science, 2021, 17, 729-754.	3.4	7

ANNA S. VON DER HEYDT

#	Article	IF	CITATIONS
55	Effects of strongly eddying oceans on multidecadal climate variability in the Community Earth System Model. Ocean Science, 2021, 17, 1251-1271.	3.4	7
56	The Mid-Pleistocene Transition induced by delayed feedback and bistability. Dynamics and Statistics of the Climate System, 0, , .	0.8	6
57	Does Net E â [°] ' P Set a Preference for North Atlantic Sinking?. Journal of Physical Oceanography, 2012, 42, 1781-1792.	1.7	5
58	Projections of the Transient Stateâ€Dependency of Climate Feedbacks. Geophysical Research Letters, 2021, 48, e2021GL094670.	4.0	5
59	El Niño in the Pliocene. Nature Geoscience, 2011, 4, 502-503.	12.9	4
60	Chaotic and non-chaotic response to quasiperiodic forcing: limits to predictability of ice ages paced by Milankovitch forcing. Dynamics and Statistics of the Climate System, 2018, 3, .	0.8	4
61	Effects of Periodic Forcing on a Paleoclimate Delay Model. SIAM Journal on Applied Dynamical Systems, 2019, 18, 1060-1077.	1.6	4
62	Localization of Multidecadal Variability. Part II: Spectral Origin of Multidecadal Modes. Journal of Physical Oceanography, 2007, 37, 2415-2428.	1.7	3
63	State dependence of climate sensitivity: attractor constraints and palaeoclimate regimes. Dynamics and Statistics of the Climate System, 2016, 1, .	0.8	3
64	El Niño–Southern Oscillation–like variability in a late Miocene Caribbean coral. Geology, 2017, 45, 643-646.	4.4	3
65	Multivariate Estimations of Equilibrium Climate Sensitivity From Short Transient Warming Simulations. Geophysical Research Letters, 2021, 48, e2020GL091090.	4.0	3
66	Sedimentary microplankton distributions are shaped by oceanographically connected areas. Earth System Dynamics, 2022, 13, 357-371.	7.1	3
67	Rationale and remit of Oxford Open Climate Change. Oxford Open Climate Change, 2021, 1, .	1.3	1
68	Pliocene evolution of the tropical Atlantic thermocline depth. Climate of the Past, 2022, 18, 961-973.	3.4	1
69	Can the Miocene climate inform the future?. Science, 2022, 377, 26-27.	12.6	1
70	Effect of the Atlantic Meridional Overturning Circulation on atmospheric <i>p</i> CO ₂ variations. Earth System Dynamics, 2022, 13, 1041-1058.	7.1	1
71	Resolution dependency of sinking Lagrangian particles in ocean general circulation models. , 2020, 15, e0238650.		0
72	Resolution dependency of sinking Lagrangian particles in ocean general circulation models. , 2020, 15, e0238650.		0

#	Article	IF	CITATIONS
73	Resolution dependency of sinking Lagrangian particles in ocean general circulation models. , 2020, 15, e0238650.		0
74	Resolution dependency of sinking Lagrangian particles in ocean general circulation models. , 2020, 15, e0238650.		0
75	Resolution dependency of sinking Lagrangian particles in ocean general circulation models. , 2020, 15, e0238650.		Ο
76	Resolution dependency of sinking Lagrangian particles in ocean general circulation models. , 2020, 15, e0238650.		0