Xin-Long Ni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5056136/publications.pdf

Version: 2024-02-01

		257450	175258
54	2,735	24	52
papers	citations	h-index	g-index
56	56	56	1802
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Cucurbit[n]uril-based coordination chemistry: from simple coordination complexes to novel poly-dimensional coordination polymers. Chemical Society Reviews, 2013, 42, 9480.	38.1	354
2	Self-Assemblies Based on the "Outer-Surface Interactions―of Cucurbit[<i>n</i>)urils: New Opportunities for Supramolecular Architectures and Materials. Accounts of Chemical Research, 2014, 47, 1386-1395.	15.6	353
3	Facile Cucurbit[8]uril-Based Supramolecular Approach To Fabricate Tunable Luminescent Materials in Aqueous Solution. Journal of the American Chemical Society, 2016, 138, 6177-6183.	13.7	268
4	Twisted Cucurbit[14]uril. Angewandte Chemie - International Edition, 2013, 52, 7252-7255.	13.8	267
5	Exploration of biocompatible AlEgens from natural resources. Chemical Science, 2018, 9, 6497-6502.	7.4	167
6	Assembly and Applications of Macrocyclic-Confinement-Derived Supramolecular Organic Luminescent Emissions from Cucurbiturils. Chemical Reviews, 2022, 122, 9032-9077.	47.7	157
7	Advances in the lanthanide metallosupramolecular chemistry of the cucurbit[n]urils. Coordination Chemistry Reviews, 2015, 287, 89-113.	18.8	106
8	Cucurbit[<i>n</i>]urilâ€Based Supramolecular Frameworks Assembled through Outerâ€Surface Interactions. Angewandte Chemie - International Edition, 2021, 60, 15166-15191.	13.8	83
9	Construction of Cucurbit[7]uril Based Tubular Nanochannels Incorporating Associated [CdCl ₄] ²⁻ and Lanthanide Ions. Inorganic Chemistry, 2013, 52, 1909-1915.	4.0	63
10	White Light Emission from Cucurbituril-Based Host–Guest Interaction in the Solid State: New Function of the Macrocyclic Host. ACS Applied Materials & Samp; Interfaces, 2018, 10, 13048-13052.	8.0	61
11	Cucurbit[10]uril-Based Smart Supramolecular Organic Frameworks in Selective Isolation of Metal Cations. Chemistry of Materials, 2017, 29, 5468-5472.	6.7	45
12	Multiple Efficient Fluorescence Emission from Cucurbit[10]uril-[Cd ₄ Cl ₁₆] ^{8–} -Based Pillared Diamond Porous Supramolecular Frameworks. ACS Applied Materials & Supramolecular Frameworks. ACS Applied Materials & Supramolecular Frameworks. ACS Applied Materials & Supramolecular Frameworks.	8.0	41
13	Supramolecular Polymerization with Dynamic Self-Sorting Sequence Control. Macromolecules, 2019, 52, 8814-8825.	4.8	40
14	An approach to networks based on coordination of alkyl-substituted cucurbit[5]urils and potassium ions. CrystEngComm, 2013, 15, 1994.	2.6	33
15	Click-modified hexahomotrioxacalix[3]arenes as fluorometric and colorimetric dual-modal chemosensors for 2,4,6-trinitrophenol. Analytica Chimica Acta, 2016, 936, 216-221.	5.4	33
16	Controllable fabrication of a supramolecular polymer incorporating twisted cucurbit[14]uril and cucurbit[8]uril via self-sorting. Chinese Chemical Letters, 2022, 33, 2455-2458.	9.0	29
17	Tetrachloridometallate Dianion-Induced Cucurbit[8]uril Supramolecular Assemblies with Large Channels and Their Potential Applications for Extraction Coating on Solid-Phase Microextraction Fibers. Inorganic Chemistry, 2014, 53, 21-23.	4.0	28
18	pH-Switched fluorescent pseudorotaxane assembly of cucurbit[7]uril with bispyridinium ethylene derivatives. Chinese Chemical Letters, 2018, 29, 95-98.	9.0	27

#	Article	IF	Citations
19	Cucurbit[10]uril-Encapsulated Cationic Porphyrins with Enhanced Fluorescence Emission and Photostability for Cell Imaging. ACS Applied Materials & Interfaces, 2021, 13, 2269-2276.	8.0	27
20	A host–guest complexation based fluorescent probe for the detection of paraquat and diquat herbicides in aqueous solutions. RSC Advances, 2015, 5, 100316-100321.	3.6	26
21	Twisted Schiff-base macrocycle showing excited-state intramolecular proton-transfer (ESIPT): assembly and sensing properties. Chemical Communications, 2020, 56, 2304-2307.	4.1	26
22	Fabrication of <i>nor-seco</i> -cucurbit[10]uril based supramolecular polymers <i>via</i> self-sorting. Chemical Communications, 2019, 55, 13836-13839.	4.1	25
23	Cucurbit[5]uril–metal complex-induced room-temperature phosphorescence of α-naphthol and β-naphthol. Dalton Transactions, 2013, 42, 2608-2615.	3.3	24
24	Anion Recognition Triggered Nanoribbon-Like Self-Assembly: A Fluorescent Chemosensor for Nitrate in Acidic Aqueous Solution and Living Cells. Analytical Chemistry, 2015, 87, 7461-7466.	6.5	22
25	Outer Surface Interactions of Cucurbit[6]uril That Trigger the Assembly of Supramolecular Threeâ€Dimensional Polycatenanes. Chemistry - A European Journal, 2017, 23, 2759-2763.	3.3	22
26	Direct evidence of a blocking heavy atom effect on the water-assisted fluorescence enhancement detection of Hg ²⁺ based on a ratiometric chemosensor. Dalton Transactions, 2014, 43, 12633-12638.	3.3	21
27	Solvent-Switched Schiff-Base Macrocycles: Self-Sorting and Self-Assembly-Dependent Unconventional Organic Particles. ACS Nano, 2019, 13, 2840-2848.	14.6	21
28	Macrocycle-based metal ion complexation: a study of the lanthanide contraction effect towards hexacyclohexanocucurbit[6]uil. CrystEngComm, 2013, 15, 738-744.	2.6	20
29	Tuning the amphiphilicity of terpyridine-based fluorescent probe in water: Assembly and disassembly-controlled H g2+ sensing, removal, and adsorption of H2S. Journal of Hazardous Materials, 2020, 384, 121474.	12.4	20
30	Development of an AIE based fluorescent probe for the detection of nitrate anions in aqueous solution over a wide pH range. RSC Advances, 2016, 6, 6997-7001.	3.6	18
31	Cucurbit[7]uril-anchored polymer vesicles enhance photosensitization in the nucleus. Journal of Materials Chemistry B, 2019, 7, 5966-5971.	5.8	16
32	Fluorescence visualization of cucurbit[8]uril-triggered dynamic host–guest assemblies. Organic Chemistry Frontiers, 2021, 8, 32-38.	4.5	16
33	A highly selective and sensitive fluorescent chemosensor for Hg ²⁺ based on a pyridine-appended Ĭ€-conjugated ligand. RSC Advances, 2014, 4, 47000-47004.	3.6	15
34	Tunable organic particles: An efficient approach from solvent-dependent Schiff base macrocycles. Chinese Chemical Letters, 2021, 32, 3522-3525.	9.0	15
35	Two-step, sequential, efficient, artificial light-harvesting systems based on twisted cucurbit[14]uril for manufacturing white light emission materials. Chemical Engineering Journal, 2022, 446, 136954.	12.7	15
36	Host–guest interactions in <i>norseco</i> -cucurbit[10]uril: novel guest-dependent molecular recognition and stereoisomerism. Beilstein Journal of Organic Chemistry, 2019, 15, 1705-1711.	2.2	14

#	Article	IF	Citations
37	Cucurbit[<i>n</i>]urilâ€Based Supramolecular Frameworks Assembled through Outerâ€Surface Interactions. Angewandte Chemie, 2021, 133, 15294-15319.	2.0	14
38	Positive and negative allosteric effects of thiacalix[4]arene-based receptors having urea andÂcrown-ether moieties. RSC Advances, 2015, 5, 14747-14755.	3.6	13
39	Cucurbit[8]uril-Assisted Nucleophilic Reaction: A Unique Supramolecular Approach for Cyanide Detection and Removal from Aqueous Solution. ACS Applied Materials & mp; Interfaces, 2021, 13, 55463-55469.	8.0	13
40	Organic core–shell-shaped micro/nanoparticles from twisted macrocycles in Schiff base reaction. Chemical Science, 2019, 10, 490-496.	7.4	12
41	Synthesis and evaluation of a novel ionophore based on a thiacalix[4]arene derivative bearing imidazole units. New Journal of Chemistry, 2014, 38, 6041-6049.	2.8	11
42	Synthesis of a ditopic homooxacalix[3]arene for fluorescence enhanced detection of heavy and transition metal ions. Supramolecular Chemistry, 2015, 27, 501-507.	1.2	11
43	Cucurbituril-assisted formation of tunable carbon dots from single organic precursors in water. Organic Chemistry Frontiers, 2021, 8, 224-230.	4.5	11
44	A study of anion binding behaviour of 1,3-alternate thiacalix[4]arene-based receptors bearing urea moieties. New Journal of Chemistry, 2016, 40, 9245-9251.	2.8	10
45	Tunable fluorescent pseudorotaxane from axle-length-dependent cucurbit[7]uril complexation. Dyes and Pigments, 2020, 172, 107785.	3.7	9
46	Host-guest interaction tailored cucurbit[6]uril-based supramolecular organic frameworks (SOFs) for drug delivery. Chinese Chemical Letters, 2022, 33, 1529-1532.	9.0	9
47	Synthesis and inclusion behavior of a heterotritopic receptor based on hexahomotrioxacalix[3]arene. RSC Advances, 2014, 4, 31469-31475.	3.6	7
48	Synthesis and inclusion properties of C3-symmetric triazole derivatives based on hexahomotrioxacalix[3]arene. New Journal of Chemistry, 2012, 36, 2580.	2.8	6
49	Host-Guest Interaction of Cucurbit[8]uril with N-(3-Aminopropyl)cyclohexylamine: Cyclohexyl Encapsulation Triggered Ternary Complex. Molecules, 2018, 23, 175.	3.8	6
50	An Air-Stable Organic Radical from a Controllable Photoinduced Domino Reaction of a Hexa-aryl Substituted Anthracene. Journal of Organic Chemistry, 2021, 86, 7359-7369.	3.2	5
51	A New Cationic Fluorescent Probe for HSO3â^' Based on Bisulfite Induced Aggregation Self-Assembly. Molecules, 2022, 27, 2378.	3.8	3
52	Cucurbit[8]uril triggered fluorescence visualization of concentration-dependent interconversion of supramolecular polymer and dimer assemblies. Dyes and Pigments, 2022, 203, 110335.	3.7	3
53	Tunable fluorescence emission for multi-color light-emitting diodes and voice-activated intelligent lighting applications. Journal of Materials Chemistry C, O, , .	5.5	3
54	Triphenylamine Derived Radical Cations for Colorimetric Cu ²⁺ Sensors and as an Antibacterial Agent. ChemistrySelect, 2022, 7, .	1.5	0