Sébastien Thomassey

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5055931/publications.pdf

Version: 2024-02-01

55 papers

1,131 citations

687363 13 h-index 32 g-index

56 all docs 56
docs citations

56 times ranked 704 citing authors

#	Article	IF	CITATIONS
1	Forecasting and Anomaly Detection approaches using LSTM and LSTM Autoencoder techniques with the applications in supply chain management. International Journal of Information Management, 2021, 57, 102282.	17.5	220
2	A hybrid sales forecasting system based on clustering and decision trees. Decision Support Systems, 2006, 42, 408-421.	5.9	151
3	Sales forecasts in clothing industry: The key success factor of the supply chain management. International Journal of Production Economics, 2010, 128, 470-483.	8.9	148
4	A neural clustering and classification system for sales forecasting of new apparel items. Applied Soft Computing Journal, $2007, 7, 1177-1187$.	7.2	144
5	A template of ease allowance for garments based on a 3D reverse methodology. International Journal of Industrial Ergonomics, 2013, 43, 406-416.	2.6	50
6	A global forecasting support system adapted to textile distribution. International Journal of Production Economics, 2005, 96, 81-95.	8.9	46
7	A short and mean-term automatic forecasting system––application to textile logistics. European Journal of Operational Research, 2005, 161, 275-284.	5.7	36
8	A deep reinforcement learning based multi-criteria decision support system for optimizing textile chemical process. Computers in Industry, 2021, 125, 103373.	9.9	29
9	Sales Forecasting in Apparel and Fashion Industry: A Review. , 2014, , 9-27.		29
10	Multi-objective optimization of the textile manufacturing process using deep-Q-network based multi-agent reinforcement learning. Journal of Manufacturing Systems, 2022, 62, 939-949.	13.9	25
11	Anomaly detection using Long Short Term Memory Networks and its applications in Supply Chain Management. IFAC-PapersOnLine, 2019, 52, 2408-2412.	0.9	20
12	A new sizing system based on 3D shape descriptor for morphology clustering. Computers and Industrial Engineering, 2017, 113, 683-692.	6.3	19
13	A design analysis for eco-fashion style using sensory evaluation tools: Consumer perceptions of product appearance. Journal of Retailing and Consumer Services, 2019, 51, 253-262.	9.4	18
14	Modeling of textile manufacturing processes using intelligent techniques: a review. International Journal of Advanced Manufacturing Technology, 2021, 116, 39-67.	3.0	18
15	A simulation based comparison: Manual and automatic distribution setup in a textile yarn rewinding unit of a yarn dyeing factory. Simulation Modelling Practice and Theory, 2014, 45, 80-90.	3.8	14
16	Modeling color fading ozonation of reactive-dyed cotton using the Extreme Learning Machine, Support Vector Regression and Random Forest. Textile Reseach Journal, 2020, 90, 896-908.	2.2	14
17	A Strategic Location Decision-Making Approach for Multi-Tier Supply Chain Sustainability. Sustainability, 2020, 12, 8340.	3.2	13
18	Low-Cost Intelligent Carpet System for Footstep Detection. IEEE Sensors Journal, 2017, 17, 4239-4247.	4.7	11

#	Article	IF	CITATIONS
19	A study on the beam pattern of ultrasonic sensor integrated to textile structure. International Journal of Clothing Science and Technology, 2011, 23, 232-241.	1.1	10
20	Al for Apparel Manufacturing in Big Data Era: A Focus on Cutting and Sewing. Springer Series in Fashion Business, 2018, , 125-151.	0.1	10
21	Optimization of garment sizing and cutting order planning in the context of mass customization. International Journal of Advanced Manufacturing Technology, 2020, 106, 3485-3503.	3.0	10
22	Introduction: Artificial Intelligence for Fashion Industry in the Big Data Era. Springer Series in Fashion Business, 2018, , 1-6.	0.1	9
23	Customer Analytics in Fashion Retail Industry. , 2019, , 349-361.		8
24	Forecasting New Apparel Sales Using Deep Learning and Nonlinear Neural Network Regression. , 2019, , .		7
25	Development of a central order processing system for optimizing demand-driven textile supply chains: a real case based simulation study. Annals of Operations Research, 2020, 291, 627-656.	4.1	7
26	Machine learning-based marker length estimation for garment mass customization. International Journal of Advanced Manufacturing Technology, 2021, 113, 3361-3376.	3.0	7
27	Exploitation of Social Network Data for Forecasting Garment Sales. International Journal of Computational Intelligence Systems, 2019, 12, 1423.	2.7	7
28	A Siamese Neural Network Application for Sales Forecasting of New Fashion Products Using Heterogeneous Data. International Journal of Computational Intelligence Systems, 2019, 12, 1537.	2.7	7
29	Intelligent demand forecasting systems for fast fashion. , 2016, , 145-161.		6
30	Analysis of consumer emotions about fashion brands: An exploratory study. , 2018, , .		5
31	Garment mass customization methods for the cutting-related processes. Textile Reseach Journal, 2021, 91, 802-819.	2.2	4
32	An Algorithm Based on Neuro-Fuzzy Controller Implemented in A Smart Clothing System For Obstacle Avoidance. International Journal of Computational Intelligence Systems, 2013, 6, 503-517.	2.7	3
33	A resource sharing solution optimized by simulation-based heuristic for garment manufacturing. International Journal of Advanced Manufacturing Technology, 2018, 99, 2803-2818.	3.0	3
34	A New Longevity Design Methodology Based on Consumer-Oriented Quality for Fashion Products. Sustainability, 2022, 14, 7696.	3.2	3
35	New human body shape descriptor based on anthropometrics points. , 2014, , .		2
36	Enterprise resource planning systems for use in apparel supply chains. , 2016, , 235-261.		2

#	Article	IF	Citations
37	A consumer-based textile quality scoring model using multi-criteria decision making. Journal of Engineered Fibers and Fabrics, 2019, 14, 155892501985477.	1.0	2
38	Supplier Prediction in Fashion Industry Using Data Mining Technology. , 2019, , .		2
39	Fashion design solutions for environmentally conscious consumers. IOP Conference Series: Materials Science and Engineering, 2017, 254, 192017.	0.6	2
40	Fashion Product Solutions and Challenges for Environmental and Trend Conscious Consumers. Journal of Fashion Technology & Textile Engineering, 0, s3, .	0.1	2
41	Comprehensive evaluation of garment assembly line with simulation. IOP Conference Series: Materials Science and Engineering, 2017, 254, 162013.	0.6	1
42	3D Adaptive Morphotype Mannequin for Target Population. Journal of Ergonomics, 2018, 08, .	0.2	1
43	FBD_Bmodel Digital Platform: A Web-Based Application for Demand Driven Fashion Supply Chain. IFIP Advances in Information and Communication Technology, 2021, , 21-30.	0.7	1
44	Integration of an Adaptive CAD System for Flexible Furniture Industry. Studies in Computational Intelligence, 2007, , 147-165.	0.9	1
45	CLUSTER-BASED SALES FORECASTING OF FAST FASHION USING LINGUISTIC VARIABLES AND ELM. , 2016, , .		1
46	An Application of Machine Learning to Marker Prediction in Garment Industry. , 2020, , .		1
47	An Approach to the Design of a Fuzzy Logic Model for the Ease Allowance Calculation in Loose Fitting Knee Length Ladies Trousers. Journal of Engineered Fibers and Fabrics, 2013, 8, 155892501300800.	1.0	O
48	Simulation modelling of central order processing system under resource sharing strategy in demand-driven garment supply chains. IOP Conference Series: Materials Science and Engineering, 2017, 254, 202004.	0.6	0
49	A Discrete Event Simulation Model with Genetic Algorithm Optimisation for Customised Textile Production Scheduling. Springer Series in Fashion Business, 2018, , 153-171.	0.1	O
50	A New Collaborative Model for Demand-Driven Supply Chains: A Case Study on Textile Industry. , 2019 , , $339-347$.		0
51	Un outil global de prévision des ventes adapté à la distribution textile. Journal Europeen Des Systemes Automatises, 2003, 37, 551-574.	0.4	O
52	Data Analysis and Statistical Interpolation of Signals for Human Footstep Tracking Using Intelligent Carpet. Journal of Fashion Technology & Textile Engineering, 0, s2, .	0.1	0
53	The application of process modeling in denim manufacturing. , 2018, , .		0
54	A collaborative platform with negotiation mechanism for make-to-order textile supply chain: A study based on multi-agent simulation. , 2018 , , .		0

SéBASTIEN THOMASSEY

 #	Article	lF	CITATIONS
55	Application of Artificial Intelligence in Modeling a Textile Finishing Process. Springer Series in Reliability Engineering, 2020, , 61-84.	0.5	0