List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5055876/publications.pdf Version: 2024-02-01

INÃOS ALONSO

#	Article	IF	CITATIONS
1	Catalytic enantioselective intramolecular 1,3-dipolar cycloaddition of azomethine ylides with fluorinated dipolarophiles. Chemical Communications, 2022, 58, 7805-7808.	4.1	8
2	Mechanistic understanding enables chemoselective sp3 over sp2 C–H activation in Pd-catalyzed carbonylative cyclization of amino acids. Catalysis Science and Technology, 2021, 11, 1590-1601.	4.1	7
3	Overcoming the Necessity of γ-Substitution in Î^C(sp ³)–H Arylation: Pd-Catalyzed Derivatization of α-Amino Acids. ACS Catalysis, 2021, 11, 5310-5317.	11.2	18
4	Rhodiumâ€Catalyzed Copperâ€Assisted Intermolecular Domino Câ^'H Annulation of 1,3â€Diynes with Picolinamides: Access to Pentacyclic Ï€â€Extended Systems. Chemistry - A European Journal, 2019, 25, 5733-5742.	3.3	22
5	The Acidity of a Carbon Nucleophile Dictates Enantioselectivity and Reactivity in Michael Additions to Aromatic and Aliphatic Enals via Iminium Activation. ACS Catalysis, 2018, 8, 22-34.	11.2	13
6	A Protocol To Transform Sulfones into Nitrones and Aldehydes. Organic Letters, 2018, 20, 5789-5793.	4.6	17
7	Rationalizing the Role of NaO ^{<i>t</i>} Bu in Copper-Catalyzed Carboboration of Alkynes: Assembly of Allylic All-Carbon Quaternary Stereocenters. ACS Catalysis, 2018, 8, 8993-9005.	11.2	31
8	Stereoselective Ag atalyzed 1,3â€Dipolar Cycloaddition of Activated Trifluoromethylâ€Substituted Azomethine Ylides. Chemistry - A European Journal, 2016, 22, 4952-4959.	3.3	53
9	Palladium-Catalyzed Carbonylative Cyclization of Amines via γ-C(sp ³)–H Activation: Late-Stage Diversification of Amino Acids and Peptides. ACS Catalysis, 2016, 6, 6868-6882.	11.2	121
10	Expanding the Potential of Heteroaryl Vinyl Sulfones. Journal of Organic Chemistry, 2016, 81, 10887-10899.	3.2	23
11	Dual Role of Pyrrolidine and Cooperative Pyrrolidine/Pyrrolidinium Effect in Nitrone Formation. ACS Catalysis, 2016, 6, 84-91.	11.2	26
12	Rh ^I /Rh ^{III} catalyst-controlled divergent aryl/heteroaryl C–H bond functionalization of picolinamides with alkynes. Chemical Science, 2015, 6, 5802-5814.	7.4	100
13	Synthesis of Enantiopure 1,5â€Enynes and 1,5â€Diynes with Propargylic Quaternary Centers. European Journal of Organic Chemistry, 2015, 2015, 3314-3319.	2.4	7
14	Asymmetric Nucleophilic Monofluorobenzylation of Allyl and Propargyl Halides Mediated by a Remote Sulfinyl Group: Synthesis of Homoallylic and Homopropargylic Fluorides. Journal of Organic Chemistry, 2014, 79, 6970-6977.	3.2	10
15	Experimental and computational studies on the mechanism of the Pd-catalyzed C(sp3)–H γ-arylation of amino acid derivatives assisted by the 2-pyridylsulfonyl group. Chemical Science, 2014, 5, 3873-3882.	7.4	38
16	p-Nitrophenyl Ethylthioester in Enantioselective Organocatalytic Michael Additions: Different Behaviour of β-Aryl and β-Alkyl Enals. European Journal of Organic Chemistry, 2013, 2013, 7067-7075.	2.4	16
17	Intermolecular Alkyl Radical Additions to Enantiopure N-tert-Butanesulfinyl Aldimines. Organic Letters, 2013, 15, 1658-1661.	4.6	33
18	C-[o-(p-Tolyl)sulfinyl]phenylnitrones. Synthesis and Reactivity in [3+2] Dipolar Cycloadditions. Heterocycles, 2012, 84, 913.	0.7	3

#	Article	IF	CITATIONS
19	Regiocontrolled Cu ^I -Catalyzed Borylation of Propargylic-Functionalized Internal Alkynes. Journal of the American Chemical Society, 2012, 134, 7219-7222.	13.7	149
20	Synthesis of Enantiomerically Pure <i>anti</i> -1,2-Diaryl and <i>syn</i> -1,2-Alkylaryl <i>vic</i> -Selenoamines. Journal of Organic Chemistry, 2012, 77, 1974-1982.	3.2	11
21	Role of quaternary ammonium salts as new additives in the enantioselective organocatalytic β-benzylation of enals. Chemical Communications, 2012, 48, 5184.	4.1	30
22	An organocatalytic approach to enantiomerically enriched α-arylcyclohexenones and cyclohexanones. Organic and Biomolecular Chemistry, 2011, 9, 8253.	2.8	17
23	Synthesis of Optically Pure <i>vic</i> -Sulfanyl Amines Mediated by a Remote Sulfinyl Group. Organic Letters, 2011, 13, 4534-4537.	4.6	13
24	Chiral Monofluorobenzyl Carbanions: Synthesis of Enantiopure βâ€Fluorinated βâ€Phenylethylamines. Chemistry - A European Journal, 2011, 17, 6142-6147.	3.3	23
25	Catalytic Asymmetric 1,3â€Dipolar Cycloaddition of αâ€Iminonitriles. Chemistry - A European Journal, 2010, 16, 5286-5291.	3.3	55
26	2â€{ <i>p</i> â€Tolylsulfinyl)benzyl Halides as Efficient Precursors of Optically Pure <i>trans</i> â€2,3â€Disubstituted Aziridines. Chemistry - A European Journal, 2010, 16, 9874-9883.	3.3	31
27	Inverse-Electron-Demand Diels-Alder Reactions of N-(Heteroarylsulfonyl)-1-aza-1,3-dienes Catalyzed by Chiral Lewis Acids. Synthesis, 2009, 2009, 113-126.	2.3	3
28	Stereoselective Addition of α-Methylsulfenyl Benzyl Carbanions to <i>N</i> -Sulfinylketimines: Asymmetric Synthesis of α,α-Dibranched β-Sulfanyl Amines. Journal of Organic Chemistry, 2009, 74, 764-772.	3.2	13
29	Stereoselective Control of Planar α-Dimethylsulfonium Benzyl Carbanions. Synthesis of Optically Pure <i>trans</i> -Aziridines. Journal of Organic Chemistry, 2009, 74, 4217-4224.	3.2	21
30	On the origin of the regioselectivity in glycosylation reactions of 1,2-diols. Organic and Biomolecular Chemistry, 2009, 7, 1471.	2.8	16
31	Understanding the Behavior of <i>N</i> -Tosyl and <i>N</i> -2-Pyridylsulfonyl Imines in Cu ^{II} -Catalyzed Aza-Friedelâ^'Crafts Reactions. Journal of Organic Chemistry, 2008, 73, 6401-6404.	3.2	59
32	Stereoselective Quaternization of α-Amino Phenylacetonitriles Mediated by a Remote Sulfinyl Group. Journal of Organic Chemistry, 2007, 72, 5994-6005.	3.2	16
33	Enantioselective Synthesis of Chiral Sulfones by Rh-Catalyzed Asymmetric Addition of Boronic Acids to î±,β-Unsaturated 2-Pyridyl Sulfones. Journal of Organic Chemistry, 2007, 72, 9924-9935.	3.2	94
34	π–π Stacking versus Steric Effects in Stereoselectivity Control: Highly Diastereoselective Synthesis ofsyn-1,2-Diarylpropylamines. Chemistry - A European Journal, 2007, 13, 6179-6195.	3.3	57
35	Understanding Sulfone Behavior in Palladium-Catalyzed Domino Reactions with Aryl Iodides. Chemistry - A European Journal, 2006, 12, 4576-4583.	3.3	18
36	Simultaneous Regio- and Enantiodifferentiation in Carbohydrate Coupling. European Journal of Organic Chemistry, 2006, 2006, 3947-3959.	2.4	13

#	Article	IF	CITATIONS
37	Sulfenylphosphinoferrocenes: Novel planar chiral ligands in enantioselective catalysis. Pure and Applied Chemistry, 2006, 78, 257-265.	1.9	25
38	Models of Putative (AH)G(AH)G Nucleobase Quartets. Angewandte Chemie - International Edition, 2005, 44, 5670-5674.	13.8	19
39	Cationic PdII Complexes of Fesulphos Ligands: Highly Efficient Catalysts for the Enantioselective Ring Opening of Oxa- and Azabicyclic Alkenes with Dialkylzinc Reagents. ChemInform, 2005, 36, no.	0.0	Ο
40	Cationic Pd II Complexes of Fesulphos Ligands: Highly Efficient Catalysts for the Enantioselective Ring Opening of Oxa- and Azabicyclic Alkenes with Dialkylzinc Reagents. Phosphorus, Sulfur and Silicon and the Related Elements, 2005, 180, 1513-1514.	1.6	5
41	Fesulphos-Palladium(II) Complexes as Well-Defined Catalysts for Enantioselective Ring Opening of Meso Heterobicyclic Alkenes with Organozinc Reagents. Journal of the American Chemical Society, 2005, 127, 17938-17947.	13.7	99
42	Vinyl Sulfoxides as Stereochemical Controllers in Intermolecular Pauson-Khand Reactions: Applications to the Enantioselective Synthesis of Natural Cyclopentanoids. Chemistry - A European Journal, 2004, 10, 5443-5459.	3.3	41
43	Synthesis of Enantiopure Planar Chiral Bisferrocenes Bearing Sulfur or Nitrogen Substituents. Organometallics, 2004, 23, 1991-1996.	2.3	9
44	Palladium-Catalyzed Cascade Reaction of α,β-Unsaturated Sulfones with Aryl Iodides ChemInform, 2003, 34, no.	0.0	0
45	Palladium-Catalyzed Cascade Reaction of α,β-Unsaturated Sulfones with Aryl Iodides. Chemistry - A European Journal, 2003, 9, 1511-1520.	3.3	62
46	Highly Stereoselective Synthesis of Trisubstituted α,β-Unsaturated Sulfoxides by Heck Reaction. Journal of Organic Chemistry, 2001, 66, 4453-4456.	3.2	23
47	Sulfoxides as Stereochemical Controllers in Intermolecular Heck Reactions. Chemistry - A European Journal, 2001, 7, 3890-3900.	3.3	62
48	Unusual Palladium-Catalyzed Cascade Arylation ofα,β-Unsaturated Phenyl Sulfones under Heck Reaction Conditions. Angewandte Chemie - International Edition, 2001, 40, 1291-1293.	13.8	51
49	Recent Applications of Vinyl Sulfones and Vinyl Sulfoxides in Asymmetric Synthesis. Phosphorus, Sulfur and Silicon and the Related Elements, 1999, 153, 259-273.	1.6	18
50	One-Step Palladium-Catalyzed Synthesis of Substituted Dihydrofurans from the Carbonate Derivatives of γ-Hydroxy-α,β-unsaturated Sulfones. Journal of Organic Chemistry, 1998, 63, 9406-9413.	3.2	43
51	Sulfinyl Group as a Novel Chiral Auxiliary in Asymmetric Heck Reactions. Journal of the American Chemical Society, 1998, 120, 7129-7130.	13.7	53
52	Palladium-Catalyzed Allylic Substitution in γ-Oxygenated Vinyl Sulfones: One-Step Synthesis of Tetrasubstituted Dihydrofurans. Journal of Organic Chemistry, 1997, 62, 5682-5683.	3.2	34
53	Chemical and enzymatic diastereoselective cleavage of β-d-galactopyranosylsulfoxides. Tetrahedron Letters, 1997, 38, 8267-8270.	1.4	35
54	A new promoter system for the sulfoxide glycosylation reaction. Tetrahedron Letters, 1996, 37, 1477-1480.	1.4	25

#	Article	IF	CITATIONS
55	The Diels–Alder Adduct of an Enantiopure Sulfinyl Trialkoxycarbonyl Ethene and Cyclopentadiene. Acta Crystallographica Section C: Crystal Structure Communications, 1996, 52, 1548-1550.	0.4	0
56	(5R)-5-[(S)-α-Hydroxybenzyl]-5-(L-menthyloxy)-4-(1-pyrrolidinyl)furan-2(5H)-one. Acta Crystallographica Section C: Crystal Structure Communications, 1996, 52, 1743-1745.	0.4	1
57	4-Sulfonyl-1,6-dioxaspiro[4.5]decanes. Acta Crystallographica Section C: Crystal Structure Communications, 1995, 51, 2381-2383.	0.4	0
58	Diels-Alder reaction of (S)-2-p-tolylsulfinyl-2-cyclopentenone with Dane's diene: an efficient approach to the enantioselective preparation of perhydro-cyclopenta[a]phenanthrenes. Tetrahedron Letters, 1994, 35, 9461-9464.	1.4	30
59	Benzyl Methyl (S)-2-(p-Tolylsulfinyl)maleate, an Efficient Dienophile in Asymmetric Diels-Alder Reactions. Journal of Organic Chemistry, 1994, 59, 1499-1508.	3.2	43
60	Benzyl methyl (S)-2-(p-tolylsulfinyl)maleate: an efficient dienophile for the enantioselective synthesis of cyclohexadienes. Journal of Organic Chemistry, 1993, 58, 3231-3232.	3.2	24
61	Synthesis and Diels-Alder reactions of t-butyl and t-butyl, methyl (S)s-2-p-tolylsulfinylmaleates, chiral synthetic equivalents of monoalkyl and mixed dialkyl acetylenedicarboxylates. Tetrahedron Letters, 1991, 32, 947-950.	1.4	18
62	Synthesis and Diels-Alder reactions of homochiral 2-sulfinylmaleates with cyclopentadiene. Tetrahedron: Asymmetry, 1991, 2, 1193-1207.	1.8	25
63	Highly diastereoselective diels-alder reaction of optically active 2-p-tolylsulphinyl-2-cycloalkenones with cyclopentadiene. Tetrahedron Letters, 1989, 30, 3853-3856.	1.4	38