Luca Palazzo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5055853/publications.pdf

Version: 2024-02-01

430442 580395 25 1,498 18 25 h-index citations g-index papers 28 28 28 1431 times ranked citing authors docs citations all docs

#	Article	IF	CITATIONS
1	Progress and outlook in studying the substrate specificities of PARPs and related enzymes. FEBS Journal, 2021, 288, 2131-2142.	2.2	44
2	Mono(ADP-ribosyl)ation Enzymes and NAD+ Metabolism: A Focus on Diseases and Therapeutic Perspectives. Cells, 2021, 10, 128.	1.8	13
3	Unrestrained poly-ADP-ribosylation provides insights into chromatin regulation and human disease. Molecular Cell, 2021, 81, 2640-2655.e8.	4.5	52
4	Serine ADP-ribosylation in DNA-damage response regulation. Current Opinion in Genetics and Development, 2021, 71, 106-113.	1.5	19
5	(ADP-ribosyl)hydrolases: structure, function, and biology. Genes and Development, 2020, 34, 263-284.	2.7	124
6	CAF-1 Subunits Levels Suggest Combined Treatments with PARP-Inhibitors and Ionizing Radiation in Advanced HNSCC. Cancers, 2019, 11, 1582.	1.7	11
7	Targeting ADP-ribosylation as an antimicrobial strategy. Biochemical Pharmacology, 2019, 167, 13-26.	2.0	17
8	PARPs and PAR as novel pharmacological targets for the treatment of stress granule-associated disorders. Biochemical Pharmacology, 2019, 167, 64-75.	2.0	23
9	ADP-ribosylation signalling and human disease. Open Biology, 2019, 9, 190041.	1.5	76
10	PARPs in genome stability and signal transduction: implications for cancer therapy. Biochemical Society Transactions, 2018, 46, 1681-1695.	1.6	56
11	Serine is the major residue for ADP-ribosylation upon DNA damage. ELife, 2018, 7, .	2.8	167
12	MacroD1 Is a Promiscuous ADP-Ribosyl Hydrolase Localized to Mitochondria. Frontiers in Microbiology, 2018, 9, 20.	1.5	42
13	<scp>ADP</scp> â€ribosylation: new facets of an ancient modification. FEBS Journal, 2017, 284, 2932-2946.	2.2	114
14	Studying Catabolism of Protein ADP-Ribosylation. Methods in Molecular Biology, 2017, 1608, 415-430.	0.4	4
15	Serine ADP-ribosylation reversal by the hydrolase ARH3. ELife, 2017, 6, .	2.8	163
16	Serine is a new target residue for endogenous ADP-ribosylation on histones. Nature Chemical Biology, 2016, 12, 998-1000.	3.9	189
17	Disruption of Macrodomain Protein SCO6735 Increases Antibiotic Production in Streptomyces coelicolor. Journal of Biological Chemistry, 2016, 291, 23175-23187.	1.6	16
18	<scp>ENPP</scp> 1 processes protein <scp>ADP</scp> â€ribosylation <i>in vitro</i> . FEBS Journal, 2016, 283, 3371-3388.	2.2	63

#	Article	IF	CITATION:
19	Processing of protein ADP-ribosylation by Nudix hydrolases. Biochemical Journal, 2015, 468, 293-301.	1.7	113
20	The Fcp1-Wee1-Cdk1 axis affects spindle assembly checkpoint robustness and sensitivity to antimicrotubule cancer drugs. Cell Death and Differentiation, 2015, 22, 1551-1560.	5.0	38
21	ATM controls proper mitotic spindle structure. Cell Cycle, 2014, 13, 1091-1100.	1.3	29
22	The end of mitosis from a phosphatase perspective. Cell Cycle, 2013, 12, 17-19.	1.3	9
23	Fcp1-dependent dephosphorylation is required for M-phase-promoting factor inactivation at mitosis exit. Nature Communications, 2012, 3, 894.	5.8	54
24	Requirement for proteolysis in spindle assembly checkpoint silencing. Cell Cycle, 2010, 9, 564-569.	1.3	27
25	Role for Non-Proteolytic Control of M-phase Promoting Factor Activity at M-phase Exit. PLoS ONE, 2007, 2, e247.	1.1	25