
Francesco Frasca

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5055743/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Worldwide Increasing Incidence of Thyroid Cancer: Update on Epidemiology and Risk Factors. Journal of Cancer Epidemiology, 2013, 2013, 1-10.	0.5	936
2	Insulin Receptor Isoforms and Insulin Receptor/Insulin-Like Growth Factor Receptor Hybrids in Physiology and Disease. Endocrine Reviews, 2009, 30, 586-623.	8.9	889
3	Diabetes and cancer. Endocrine-Related Cancer, 2009, 16, 1103-1123.	1.6	857
4	Insulin Receptor Isoform A, a Newly Recognized, High-Affinity Insulin-Like Growth Factor II Receptor in Fetal and Cancer Cells. Molecular and Cellular Biology, 1999, 19, 3278-3288.	1.1	804
5	Insulin/Insulin-like Growth Factor I Hybrid Receptors Have Different Biological Characteristics Depending on the Insulin Receptor Isoform Involved. Journal of Biological Chemistry, 2002, 277, 39684-39695.	1.6	413
6	The role of insulin receptors and IGF-I receptors in cancer and other diseases. Archives of Physiology and Biochemistry, 2008, 114, 23-37.	1.0	365
7	Insulin Receptor Isoforms in Physiology and Disease: An Updated View. Endocrine Reviews, 2017, 38, 379-431.	8.9	270
8	Insulin receptor activation by IGF-II in breast cancers: evidence for a new autocrine/paracrine mechanism. Oncogene, 1999, 18, 2471-2479.	2.6	261
9	Levothyroxine Monotherapy Cannot Guarantee Euthyroidism in All Athyreotic Patients. PLoS ONE, 2011, 6, e22552.	1.1	234
10	BRAF(V600E) mutation and the biology of papillary thyroid cancer. Endocrine-Related Cancer, 2008, 15, 191-205.	1.6	210
11	Insulin and insulin-like growth factor-I (IGF-I) receptor overexpression in breast cancers leads to insulin/IGF-I hybrid receptor overexpression: evidence for a second mechanism of IGF-I signaling. Clinical Cancer Research, 1999, 5, 1935-44.	3.2	191
12	Androgens Up-regulate the Insulin-like Growth Factor-I Receptor in Prostate Cancer Cells. Cancer Research, 2005, 65, 1849-1857.	0.4	188
13	Papillary Thyroid Cancer Incidence in the Volcanic Area of Sicily. Journal of the National Cancer Institute, 2009, 101, 1575-1583.	3.0	138
14	Insulin Receptor Isoforms and Insulin-Like Growth Factor Receptor in Human Follicular Cell Precursors from Papillary Thyroid Cancer and Normal Thyroid. Journal of Clinical Endocrinology and Metabolism, 2011, 96, 766-774.	1.8	130
15	IGF and Insulin Receptor Signaling in Breast Cancer. Journal of Mammary Gland Biology and Neoplasia, 2008, 13, 381-406.	1.0	122
16	Peroxisomal Proliferator-Activated Receptor-Î ³ Agonists Induce Partial Reversion of Epithelial-Mesenchymal Transition in Anaplastic Thyroid Cancer Cells. Endocrinology, 2006, 147, 4463-4475.	1.4	96
17	Fine-Needle Aspiration Molecular Analysis for the Diagnosis of Papillary Thyroid Carcinoma Through BRAFV600E Mutation and RET/PTC Rearrangement. Thyroid, 2007, 17, 1109-1115.	2.4	94
18	Altered Expression of c-IAP1, Survivin, and Smac Contributes to Chemotherapy Resistance in Thyroid Cancer Cells. Cancer Research, 2006, 66, 4263-4272.	0.4	90

FRANCESCO FRASCA

#	Article	IF	CITATIONS
19	Curcumin, Hormesis and the Nervous System. Nutrients, 2019, 11, 2417.	1.7	89
20	HMGA1 Inhibits the Function of p53 Family Members in Thyroid Cancer Cells. Cancer Research, 2006, 66, 2980-2989.	0.4	87
21	Clinical and molecular mechanisms favoring cancer initiation and progression in diabetic patients. Nutrition, Metabolism and Cardiovascular Diseases, 2013, 23, 808-815.	1.1	85
22	Modifications in the Papillary Thyroid Cancer Gene Profile Over the Last 15 Years. Journal of Clinical Endocrinology and Metabolism, 2012, 97, E1758-E1765.	1.8	83
23	Insulin Receptors in Breast Cancer. Annals of the New York Academy of Sciences, 1996, 784, 173-188.	1.8	66
24	Tyrosine kinase inhibitor STI571 enhances thyroid cancer cell motile response to Hepatocyte Growth Factor. Oncogene, 2001, 20, 3845-3856.	2.6	66
25	p53 family proteins in thyroid cancer. Endocrine-Related Cancer, 2007, 14, 43-60.	1.6	62
26	Insulin and Hybrid Insulin/IGF Receptors Are Major Regulators of Breast Cancer Cells. Breast Disease, 2003, 17, 73-89.	0.4	59
27	Obesity and cancer. Nutrition, Metabolism and Cardiovascular Diseases, 2006, 16, 1-7.	1.1	58
28	Overexpression of membrane glycoprotein PC-1 in MDA-MB231 breast cancer cells is associated with inhibition of insulin receptor tyrosine kinase activity Molecular Endocrinology, 1996, 10, 1318-1326.	3.7	53
29	The p53-homologue p63 may promote thyroid cancer progression. Endocrine-Related Cancer, 2005, 12, 953-971.	1.6	50
30	Updates on the Management of Advanced, Metastatic, and Radioiodine Refractory Differentiated Thyroid Cancer. Frontiers in Endocrinology, 2017, 8, 312.	1.5	46
31	Activation of the Hepatocyte Growth Factor (HGF)-MetSystem in Papillary Thyroid Cancer: Biological Effects of HGF in Thyroid Cancer Cells Depend onMetExpression Levels. Endocrinology, 2004, 145, 4355-4365.	1.4	45
32	Reactivation of p53 mutants by p53 reactivation and induction of massive apoptosis in thyroid cancer cells. International Journal of Cancer, 2012, 130, 2259-2270.	2.3	45
33	Levels of histone acetylation in thyroid tumors. Biochemical and Biophysical Research Communications, 2011, 411, 679-683.	1.0	41
34	p73 tumor-suppressor activity is impaired in human thyroid cancer. Cancer Research, 2003, 63, 5829-37.	0.4	39
35	î"Np73α inhibits PTEN expression in thyroid cancer cells. International Journal of Cancer, 2009, 124, 2539-2548.	2.3	37
36	Interleukin-4 Stimulates Papillary Thyroid Cancer Cell Survival: Implications in Patients with Thyroid Cancer and Concomitant Graves' Disease. Journal of Clinical Endocrinology and Metabolism, 2004, 89, 2880-2889.	1.8	35

FRANCESCO FRASCA

#	Article	IF	CITATIONS
37	17β-Estradiol Up-regulates the Insulin-like Growth Factor Receptor through a Nongenotropic Pathway in Prostate Cancer Cells. Cancer Research, 2007, 67, 8932-8941.	0.4	35
38	IRF5 promotes the proliferation of human thyroid cancer cells. Molecular Cancer, 2012, 11, 21.	7.9	34
39	Exclusion of c-Abl from the Nucleus Restrains the p73 Tumor Suppression Function. Journal of Biological Chemistry, 2003, 278, 25151-25157.	1.6	33
40	<i>Galâ€3</i> is stimulated by gainâ€ofâ€function <i>p53</i> mutations and modulates chemoresistance in anaplastic thyroid carcinomas. Journal of Pathology, 2009, 218, 66-75.	2.1	33
41	Update on thyroid cancer treatment. Future Oncology, 2012, 8, 1331-1348.	1.1	33
42	Overexpression of membrane glycoprotein PC-1 in MDA-MB231 breast cancer cells is associated with inhibition of insulin receptor tyrosine kinase activity. Molecular Endocrinology, 1996, 10, 1318-1326.	3.7	31
43	The <i>BRAF^{V600E}</i> Mutation Influences the Short- and Medium-Term Outcomes of Classic Papillary Thyroid Cancer, But Is Not an Independent Predictor of Unfavorable Outcome. Thyroid, 2014, 24, 1267-1274.	2.4	30
44	Role of c-Abl in Directing Metabolic versus Mitogenic Effects in Insulin Receptor Signaling. Journal of Biological Chemistry, 2007, 282, 26077-26088.	1.6	29
45	Thyrospheres From Normal or Malignant Thyroid Tissue Have Different Biological, Functional, and Genetic Features. Journal of Clinical Endocrinology and Metabolism, 2015, 100, E1168-E1178.	1.8	29
46	Computational modeling reveals MAP3K8 as mediator of resistance to vemurafenib in thyroid cancer stem cells. Bioinformatics, 2019, 35, 2267-2275.	1.8	28
47	Insulin-stimulated cell growth in insulin receptor substrate-1–deficient ZR-75-1 cells is mediated by a phosphatidylinositol-3-kinase–independent pathway. , 1998, 70, 268-280.		26
48	TAp73α Increases p53 Tumor Suppressor Activity in Thyroid Cancer Cells via the Inhibition of Mdm2-Mediated Degradation. Molecular Cancer Research, 2008, 6, 64-77.	1.5	26
49	Mitotane treatment in patients with adrenocortical cancer causes central hypothyroidism. Clinical Endocrinology, 2016, 84, 614-619.	1.2	26
50	Selenium exerts protective effects against oxidative stress and cell damage in human thyrocytes and fibroblasts. Endocrine, 2020, 68, 151-162.	1.1	26
51	Relationship between betacoronaviruses and the endocrine system: a new key to understand the COVID-19 pandemic—A comprehensive review. Journal of Endocrinological Investigation, 2021, 44, 1553-1570.	1.8	26
52	Effect of Combined Epigenetic Treatments and Ectopic NIS Expression on Undifferentiated Thyroid Cancer Cells. Anticancer Research, 2018, 38, 6653-6662.	0.5	25
53	Chapter 4 câ€Abl and Insulin Receptor Signalling. Vitamins and Hormones, 2009, 80, 77-105.	0.7	23
54	Role of selenium and myo-inositol supplementation on autoimmune thyroiditis progression. Endocrine Journal, 2020, 67, 1093-1098.	0.7	22

FRANCESCO FRASCA

#	Article	IF	CITATIONS
55	The tall cell variant of papillary thyroid carcinoma: clinical and pathological features and outcomes. Journal of Endocrinological Investigation, 2013, 36, 249-54.	1.8	22
56	Thyroid Cancer and Circadian Clock Disruption. Cancers, 2020, 12, 3109.	1.7	21
57	Evidence That Baseline Levels of Low-Density Lipoproteins Cholesterol Affect the Clinical Response of Graves' Ophthalmopathy to Parenteral Corticosteroids. Frontiers in Endocrinology, 2020, 11, 609895.	1.5	19
58	Interleukin-1 blocks insulin and insulin-like growth factor-stimulated growth in MCF-7 human breast cancer cells by inhibiting receptor tyrosine kinase activity Endocrinology, 1996, 137, 4100-4107.	1.4	17
59	Seasonal variations in <scp>TSH</scp> serum levels in athyreotic patients under Lâ€ŧhyroxine replacement monotherapy. Clinical Endocrinology, 2017, 87, 207-215.	1.2	16
60	In thyroid cancer cell lines expression of periostin gene is controlled by p73 and is not related to epigenetic marks of active transcription. Cellular Oncology (Dordrecht), 2011, 34, 131-140.	2.1	15
61	Sex Steroids Upregulate the ICFâ€1R in Prostate Cancer Cells through a Nongenotropic Pathway. Annals of the New York Academy of Sciences, 2009, 1155, 263-267.	1.8	14
62	Surveillance of patients with differentiated thyroid cancer and indeterminate response: a longitudinal study on basal thyroglobulin trend. Journal of Endocrinological Investigation, 2019, 42, 1223-1230.	1.8	14
63	The Possible Role of Cancer Stem Cells in the Resistance to Kinase Inhibitors of Advanced Thyroid Cancer. Cancers, 2020, 12, 2249.	1.7	13
64	Expression of neurotrophins, GDNF, and their receptors in rat thyroid tissue. Cell and Tissue Research, 1999, 295, 467-475.	1.5	10
65	Abnormal 1-hour post-load glycemia during pregnancy impairs post-partum metabolic status: a single-center experience. Journal of Endocrinological Investigation, 2018, 41, 567-573.	1.8	7
66	Challenges in the treatment of parathyroid carcinoma: a case report. Hormones, 2019, 18, 325-328.	0.9	7
67	Recent insights into the pathogenesis of autoimmune hypophysitis. Expert Review of Clinical Immunology, 2021, 17, 1175-1185.	1.3	7
68	Re: Insulin, Insulin-like Growth Factor-I, and Risk of Breast Cancer in Postmenopausal Women. Journal of the National Cancer Institute, 2009, 101, 1030-1031.	3.0	5
69	Cytological diagnosis difficulties in hyalinizing trabecular adenoma of the thyroid. Journal of Endocrinological Investigation, 2011, 34, 887-888.	1.8	5
70	Corticosteroid Pulse Therapy for Graves' Ophthalmopathy Reduces the Relapse Rate of Graves' Hyperthyroidism. Frontiers in Endocrinology, 2020, 11, 367.	1.5	4
71	Onset of Marine-Lenhart syndrome and Graves' ophthalmopathy in a female patient treated with alemtuzumab for multiple sclerosis. Hormones, 2021, 20, 161-165.	0.9	2
72	Different FT3/TSH correlation in acquired and congenital hypothyroid patients reveals a different hypothalamic setâ€point. Clinical Endocrinology, 2022, , .	1.2	2

#	Article	IF	CITATIONS
73	Gene expression and pathway bioinformatics analysis detect a potential predictive value of MAP3K8 in thyroid cancer progression. , 2019, , .		0