Giuliano M. Dragone

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5055519/publications.pdf

Version: 2024-02-01

46 papers

4,617 citations

147566 31 h-index 233125 45 g-index

46 all docs 46 docs citations

46 times ranked

5509 citing authors

#	Article	IF	CITATIONS
1	Challenges and opportunities to increase economic feasibility and sustainability of mixotrophic cultivation of green microalgae of the genus Chlorella. Renewable and Sustainable Energy Reviews, 2022, 160, 112284.	8.2	29
2	Strategies for an improved extraction and separation of lipids and carotenoids from oleaginous yeast. Separation and Purification Technology, 2021, 257, 117946.	3.9	32
3	Effects of inhibitory compounds derived from lignocellulosic biomass on the growth of the wild-type and evolved oleaginous yeast Rhodosporidium toruloides. Industrial Crops and Products, 2021, 170, 113799.	2.5	32
4	New trends in bioprocesses for lignocellulosic biomass and CO2 utilization. Renewable and Sustainable Energy Reviews, 2021, 152, 111620.	8.2	27
5	Lipid and carotenoid production from wheat straw hydrolysates by different oleaginous yeasts. Journal of Cleaner Production, 2020, 249, 119308.	4.6	61
6	Innovation and strategic orientations for the development of advanced biorefineries. Bioresource Technology, 2020, 302, 122847.	4.8	152
7	Production of Itaconic Acid from Cellulose Pulp: Feedstock Feasibility and Process Strategies for an Efficient Microbial Performance. Energies, 2020, 13, 1654.	1.6	26
8	Production of biofuel precursors and value-added chemicals from hydrolysates resulting from hydrothermal processing of biomass: A review. Biomass and Bioenergy, 2019, 130, 105397.	2.9	62
9	Oleaginous yeasts for sustainable lipid production—from biodiesel to surf boards, a wide range of "green―applications. Applied Microbiology and Biotechnology, 2019, 103, 3651-3667.	1.7	99
10	Hydrodynamic cavitation as a strategy to enhance the efficiency of lignocellulosic biomass pretreatment. Critical Reviews in Biotechnology, 2018, 38, 483-493.	5.1	61
11	Sugarcane bagasse hydrolysate as a potential feedstock for red pigment production by Monascus ruber. Food Chemistry, 2018, 245, 786-791.	4.2	65
12	Optimization of lipid extraction from the oleaginous yeasts Rhodotorula glutinis and Lipomyces kononenkoae. AMB Express, 2018, 8, 126.	1.4	30
13	Anaerobic digestion process: technological aspects and recent developments. International Journal of Environmental Science and Technology, 2018, 15, 2033-2046.	1.8	89
14	Start-up phase of a two-stage anaerobic co-digestion process: hydrogen and methane production from food waste and vinasse from ethanol industry. Biofuel Research Journal, 2018, 5, 813-820.	7.2	38
15	Biomass Pretreatment, Biorefineries, and Potential Products for a Bioeconomy Development. , 2016, , 1-22.		35
16	Characterization of split cylinder airlift photobioreactors for efficient microalgae cultivation. Chemical Engineering Science, 2014, 117, 445-454.	1.9	56
17	Production, chemical characterization, and sensory profile of a novel spirit elaborated from spent coffee ground. LWT - Food Science and Technology, 2013, 54, 557-563.	2.5	57
18	Optimization of CO2 bio-mitigation by Chlorella vulgaris. Bioresource Technology, 2013, 139, 149-154.	4.8	210

#	Article	IF	CITATIONS
19	Relationship between starch and lipid accumulation induced by nutrient depletion and replenishment in the microalga Parachlorella kessleri. Bioresource Technology, 2013, 144, 268-274.	4.8	114
20	Mixotrophic cultivation of Chlorella vulgaris using industrial dairy waste as organic carbon source. Bioresource Technology, 2012, 118, 61-66.	4.8	309
21	Starch determination in Chlorella vulgaris—a comparison between acid and enzymatic methods. Journal of Applied Phycology, 2012, 24, 1203-1208.	1.5	70
22	Optimization of pretreatment of Jatropha oil with high free fatty acids for biodiesel production. Frontiers of Chemical Science and Engineering, 2012, 6, 210-215.	2.3	13
23	Brazilian kefir: structure, microbial communities and chemical composition. Brazilian Journal of Microbiology, 2011, 42, 693-702.	0.8	118
24	Nutrient limitation as a strategy for increasing starch accumulation in microalgae. Applied Energy, 2011, 88, 3331-3335.	5.1	315
25	Optimal fermentation conditions for maximizing the ethanol production by Kluyveromyces fragilis from cheese whey powder. Biomass and Bioenergy, 2011, 35, 1977-1982.	2.9	63
26	Comparative study of the biochemical changes and volatile compound formations during the production of novel whey-based kefir beverages and traditional milk kefir. Food Chemistry, 2011, 126, 249-253.	4.2	79
27	Light Regime Characterization in an Airlift Photobioreactor for Production of Microalgae with High Starch Content. Applied Biochemistry and Biotechnology, 2010, 161, 218-226.	1.4	57
28	Technological trends, global market, and challenges of bio-ethanol production. Biotechnology Advances, 2010, 28, 817-830.	6.0	585
29	Fermentative behavior of Saccharomyces strains during microvinification of raspberry juice (Rubus) Tj ETQq $1\ 1\ 0$).784314 r 2.1	gBŢ ₁ /Overloc
30	Production of fermented cheese whey-based beverage using kefir grains as starter culture: Evaluation of morphological and microbial variations. Bioresource Technology, 2010, 101, 8843-8850.	4.8	92
31	Characterisation of volatile compounds in an alcoholic beverage produced by whey fermentation. Food Chemistry, 2009, 112, 929-935.	4.2	181
32	The effect of agitation speed, enzyme loading and substrate concentration on enzymatic hydrolysis of cellulose from brewer's spent grain. Cellulose, 2008, 15, 711-721.	2.4	82
33	Influence of temperature on continuous high gravity brewing with yeasts immobilized on spent grains. European Food Research and Technology, 2008, 228, 257-264.	1.6	19
34	High gravity batch and continuous processes for beer production: Evaluation of fermentation performance and beer quality. Chemical Papers, 2008, 62, .	1.0	19
35	Kinetic Behavior of Candida guilliermondii Yeast during Xylitol Production from Brewerapos;s Spent Grain Hemicellulosic Hydrolysate. Biotechnology Progress, 2008, 21, 1352-1356.	1.3	22
36	High Gravity Brewing by Continuous Process Using Immobilised Yeast: Effect of Wort Original Gravity on Fermentation Performance. Journal of the Institute of Brewing, 2007, 113, 391-398.	0.8	28

#	Article	IF	CITATIONS
37	Ferulic and p-coumaric acids extraction by alkaline hydrolysis of brewer's spent grain. Industrial Crops and Products, 2007, 25, 231-237.	2.5	206
38	Brewer's spent grain as raw material for lactic acid production by Lactobacillus delbrueckii. Biotechnology Letters, 2007, 29, 1973-1976.	1.1	61
39	Xylitol production in a bubble column bioreactor: Influence of the aeration rate and immobilized system concentration. Process Biochemistry, 2007, 42, 258-262.	1.8	37
40	Optimum operating conditions for brewer's spent grain soda pulping. Carbohydrate Polymers, 2006, 64, 22-28.	5.1	57
41	Brewers' spent grain: generation, characteristics and potential applications. Journal of Cereal Science, 2006, 43, 1-14.	1.8	726
42	Evaluation of porous glass and zeolite as cells carriers for xylitol production from sugarcane bagasse hydrolysate. Biochemical Engineering Journal, 2005, 23, 1-9.	1.8	41
43	Influence of the toxic compounds present in brewer's spent grain hemicellulosic hydrolysate on xylose-to-xylitol bioconversion by Candida guilliermondii. Process Biochemistry, 2005, 40, 3801-3806.	1.8	48
44	Detoxification of sugarcane bagasse hemicellulosic hydrolysate with ion-exchange resins for xylitol production by calcium alginate-entrapped cells. Journal of Chemical Technology and Biotechnology, 2004, 79, 863-868.	1.6	40
45	Factors influencing ethanol production rates at high-gravity brewing. LWT - Food Science and Technology, 2004, 37, 797-802.	2.5	24
46	Improvement of the ethanol productivity in a high gravity brewing at pilot plant scale. Biotechnology Letters, 2003, 25, 1171-1174.	1.1	19