
JérÃ'me Blanchet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5055272/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Phenysilane and Silicon Tetraacetate: Versatile Promotors for Amide Synthesis. European Journal of Organic Chemistry, 2020, 2020, 388-392.	2.4	21
2	H-bonding vs Protonation of Alkynes in Regioselective Hydroamination Reactions: A Glimpse into the Reactivity of Arylogous Ynolethers and Ynamines. Journal of Organic Chemistry, 2019, 84, 15448-15475.	3.2	5
3	Catalytic and metal-free intramolecular hydroalkoxylation of alkynes. Tetrahedron Letters, 2019, 60, 534-537.	1.4	4
4	Borinic Acid Mediated Hydrosilylations: Reductions of Carbonyl Derivatives. European Journal of Organic Chemistry, 2019, 2019, 995-998.	2.4	11
5	Recent Advances in Amide Reductions. Synthesis, 2018, 50, 984-997.	2.3	66
6	Domino Ring Expansion: Regioselective Access to 9â€Membered Lactones with a Fused Indole Unit from 2â€Nitrophenylâ€1,3â€cyclohexanediones. Chemistry - A European Journal, 2018, 24, 2080-2084.	3.3	27
7	Borinic Acid Catalysed Reduction of Tertiary Amides with Hydrosilanes: A Mild and Chemoselective Synthesis of Amines. Chemistry - A European Journal, 2017, 23, 2005-2009.	3.3	46
8	Metalâ€Free Reduction of Phosphine Oxides, Sulfoxides, and <i>N</i> â€Oxides with Hydrosilanes using a Borinic Acid Precatalyst. ChemCatChem, 2017, 9, 4460-4464.	3.7	21
9	Formamide Synthesis through Borinic Acid Catalysed Transamidation under Mild Conditions. Chemistry - A European Journal, 2016, 22, 5894-5898.	3.3	72
10	Catalytic Chemical Amide Synthesis at Room Temperature: One More Step Toward Peptide Synthesis. Journal of Organic Chemistry, 2015, 80, 4532-4544.	3.2	114
11	An Organocatalytic Access to Spiro[4.5]decanes and Spiro[4.6]undecanes Containing Aminolactones and 3-Aminopyrrolidines. Synthesis, 2015, 47, 2549-2553.	2.3	2
12	Borinic acid catalysed peptide synthesis. Chemical Communications, 2015, 51, 16084-16087.	4.1	76
13	An Easy Route to (Hetero)arylboronic Acids. Chemistry - A European Journal, 2014, 20, 6608-6612.	3.3	62
14	(â~')-Cytisine and Derivatives: Synthesis, Reactivity, and Applications. Chemical Reviews, 2014, 114, 712-778.	47.7	113
15	Expedient BINOL derivative arylations. Tetrahedron Letters, 2014, 55, 6420-6422.	1.4	7
16	Sequential One-Pot Access to Molecular Diversity through Aniline Aqueous Borylation. Journal of Organic Chemistry, 2014, 79, 10568-10580.	3.2	33
17	Diastereoselective organocatalytic Mannich access to azacyclic system en route to lyconadin A. Tetrahedron Letters, 2014, 55, 5074-5077.	1.4	3
18	Stereoselective access to heteroarylmethylene-substituted pyrrolidines: fully organocatalytic Mannich–hydroamination reactions. Chemical Communications, 2013, 49, 1651	4.1	14

JéRôME BLANCHET

#	Article	IF	CITATIONS
19	An organocatalytic route to 2-heteroarylmethylene decorated <i>N</i> -arylpyrroles. Beilstein Journal of Organic Chemistry, 2013, 9, 1480-1486.	2.2	8
20	Synthesis of a New Chiral Sulfonic Acid. Synthesis, 2012, 44, 1349-1352.	2.3	10
21	Expanding the Scope of the Direct Regiospecific Asymmetric Aldol Reaction to Enones and Dienones Catalyzed by a BINOLâ€Đerived BrÃ,nsted Acid. European Journal of Organic Chemistry, 2011, 2011, 6628-6631.	2.4	14
22	BrÃ,nsted Acid Catalyzed Asymmetric Aldol Reaction: A Complementary Approach to Enamine Catalysis. Organic Letters, 2010, 12, 3582-3585.	4.6	92
23	Synthesis of P,N-2,2′-biphenyl derivatives with central chirality. Science China Chemistry, 2010, 53, 1907-1913.	8.2	2
24	Oneâ€Pot Hydroxy Group Activation/Carbonâ€Carbon Bond Forming Sequence Using a BrÃ,nsted Base/BrÃ,nsted Acid System. Advanced Synthesis and Catalysis, 2010, 352, 2881-2886.	4.3	40
25	Chiral 3-aminopyrrolidines as a rigid diamino scaffold for organocatalysis and organometallic chemistry. Tetrahedron: Asymmetry, 2010, 21, 1511-1521.	1.8	16
26	Synthesis of BINOL derived phosphorodithioic acids as new chiral BrÃ,nsted acids and an improved synthesis of 3,3′-disubstituted H8-BINOL derivatives. Tetrahedron, 2009, 65, 10617-10622.	1.9	35
27	Asymmetric Malonic and Acetoacetic Acid Syntheses – A Century of Enantioselective Decarboxylative Protonations. European Journal of Organic Chemistry, 2008, 2008, 5493-5506.	2.4	81
28	4-Toluenesulfonic acid: an environmentally benign catalyst for Nazarov cyclizations. Tetrahedron Letters, 2008, 49, 2541-2545.	1.4	21
29	Desymmetrization of a <i>meso</i> -Allylic Acetal by Enantioselective Conjugate Elimination. Organic Letters, 2008, 10, 729-732.	4.6	15
30	3-Trifluoromethanesulfonamido-pyrrolidine:  A General Organocatalyst for <i>anti</i> -Selective Mannich Reactions. Organic Letters, 2008, 10, 1029-1032.	4.6	62
31	DirectedOrthoMetalationâ^'Cross Coupling Strategies.N-Cumyl Arylsulfonamides. Facile Deprotection and Expedient Route to 7- and 4,7-Substituted Saccharins⊥. Journal of Organic Chemistry, 2007, 72, 3199-3206.	3.2	44
32	A rapid and convenient synthesis of \hat{l}^2 -proline. Tetrahedron Letters, 2007, 48, 5727-5730.	1.4	18
33	Aziridinium fromN,N-Dibenzyl Serine Methyl Ester:  Synthesis of Enantiomerically Pure β-Amino and α,β-Diamino Esters. Organic Letters, 2006, 8, 2183-2186.	4.6	45
34	Reeve′s Synthesis of 2-Imino-4-thiazolidinone from Alkyl (Aryl) Trichloromethylcarbinol Revisited: A Three-Component Process from Aldehyde, Chloroform and Thiourea ChemInform, 2004, 35, no.	0.0	0
35	Synthesis and Reactivity of Mixed Alkynylalanes by Direct Triethylamine-Catalyzed Alumination of Terminal Alkynes ChemInform, 2004, 35, no.	0.0	0
36	Reeve's synthesis of 2-imino-4-thiazolidinone from alkyl (aryl) trichloromethylcarbinol revisited, a three-component process from aldehyde, chloroform and thiourea. Tetrahedron Letters, 2004, 45, 4449-4452.	1.4	50

JéRôME BLANCHET

#	Article	IF	CITATIONS
37	Synthesis and Reactivity of Mixed Alkynylalanes by Direct Triethylamine-Catalyzed Alumination of Terminal Alkynesâ€. Organic Letters, 2004, 6, 2333-2336.	4.6	59
38	RECENT PROGRESS IN THE ASYMMETRIC SYNTHESIS OF α-SUBSTITUTED PROPARGYLAMINES. Organic Preparations and Procedures International, 2002, 34, 467-492.	1.3	16
39	Isomerization of Chiral Non-Racemic α-Substituted Propargylic Amines to Terminal Acetylenes. European Journal of Organic Chemistry, 2002, 2002, 2598.	2.4	7
40	Asymmetric synthesis of β-pseudopeptides from chiral 3,4-aziridinolactams. Tetrahedron: Asymmetry, 2002, 13, 995-1004.	1.8	14
41	Asymmetric synthesis of $\hat{l}\pm$ -substituted propynyl amines. Application to the preparation of a polysubstituted dihydroisoindoline framework. Tetrahedron Letters, 2001, 42, 3171-3173.	1.4	11
42	[2,3]-Meisenheimer rearrangement of N-allyl phenylglycinol derivatives. Nî—,C versus Cî—,C chirality transfer. Tetrahedron Letters, 2000, 41, 8279-8283.	1.4	28
43	Synthesis of Enantiomerically Pure α-Substituted Propargylic Amines by Reaction of Organoaluminum Reagents with Oxazolidines. Journal of Organic Chemistry, 2000, 65, 6423-6426.	3.2	48
44	Diastereoselective alkynylation of chiral non-racemic oxazolidines with mixed organoaluminum compounds. Tetrahedron Letters, 1999, 40, 2935-2938.	1.4	33