Anna C Balazs

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5055248/publications.pdf

Version: 2024-02-01

376 papers 18,881 citations

20036 63 h-index 123 g-index

392 all docs

392 docs citations

times ranked

392

15379 citing authors

#	Article	IF	CITATIONS
1	Harnessing the power of chemically active sheets in solution. Nature Reviews Physics, 2022, 4, 125-137.	11.9	13
2	Self-Generated Convective Flows Enhance the Rates of Chemical Reactions. Langmuir, 2022, 38, 1432-1439.	1.6	7
3	Self-regulated non-reciprocal motions in single-material microstructures. Nature, 2022, 605, 76-83.	13.7	63
4	Computer modeling reveals modalities to actuate mutable, active matter. Nature Communications, 2022, 13, 2689.	5.8	6
5	Solutal-buoyancy-driven intertwining and rotation of patterned elastic sheets. , 2022, 1, .		1
6	Formation of helices with controllable chirality in gel-fiber composites. Polymer, 2021, 212, 123191.	1.8	1
7	Controllable growth of interpenetrating or random copolymer networks. Soft Matter, 2021, 17, 7177-7187.	1.2	7
8	Self-Morphing, Chemically Driven Gears and Machines. Matter, 2021, 4, 600-617.	5.0	9
9	Achieving Independent Control over Surface and Bulk Fluid Flows in Microchambers. ACS Applied Materials & Samp; Interfaces, 2021, 13, 6870-6878.	4.0	9
10	Chemical pumps and flexible sheets spontaneously form self-regulating oscillators in solution. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	41
11	Colloidal Assembly and Separation under UVâ€Induced Convective Flows and on Inclines. ChemNanoMat, 2021, 7, 805-810.	1.5	3
12	Resonant amplification of enzymatic chemical oscillations by oscillating flow. Chaos, 2021, 31, 093125.	1.0	1
13	Using Dissipative Particle Dynamics to Model Effects of Chemical Reactions Occurring within Hydrogels. Nanomaterials, 2021, 11, 2764.	1.9	3
14	Dynamic behavior of chemically tunable mechano-responsive hydrogels. Soft Matter, 2021, 17, 10664-10674.	1.2	4
15	Patterning non-equilibrium morphologies in stimuli-responsive gels through topographical confinement. Soft Matter, 2020, 16, 1463-1472.	1.2	7
16	Light-Induced Dynamic Control of Particle Motion in Fluid-Filled Microchannels. Langmuir, 2020, 36, 10022-10032.	1.6	4
17	Effects of an Imposed Flow on Chemical Oscillations Generated by Enzymatic Reactions. Frontiers in Chemistry, 2020, 8, 618.	1.8	2
18	Buckling-induced interaction between circular inclusions in an infinite thin plate. Physical Review E, 2020, 102, 033004.	0.8	5

#	Article	IF	CITATIONS
19	Understanding the origin of softness in structurally tailored and engineered macromolecular (STEM) gels: A DPD study. Polymer, 2020, 208, 122909.	1.8	3
20	Enhancement of chemical oscillations by self-generated convective flows. Communications Physics, 2020, 3, .	2.0	10
21	STEM Gels by Controlled Radical Polymerization. Trends in Chemistry, 2020, 2, 341-353.	4.4	35
22	Harnessing biomimetic cryptic bonds to form self-reinforcing gels. Soft Matter, 2020, 16, 5120-5131.	1.2	7
23	Chemically controlled shape-morphing of elastic sheets. Materials Horizons, 2020, 7, 2314-2327.	6.4	13
24	Opto-chemo-mechanical transduction in photoresponsive gels elicits switchable self-trapped beams with remote interactions. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 3953-3959.	3.3	12
25	Controlling the Spatiotemporal Transport of Particles in Fluid-Filled Microchambers. Langmuir, 2020, 36, 7124-7132.	1.6	7
26	Twist again: Dynamically and reversibly controllable chirality in liquid crystalline elastomer microposts. Science Advances, 2020, 6, eaay5349.	4.7	24
27	Organization of Particle Islands through Lightâ€Powered Fluid Pumping. Angewandte Chemie, 2019, 131, 2317-2321.	1.6	5
28	Modeling the biomimetic self-organization of active objects in fluids. Nano Today, 2019, 29, 100804.	6.2	2
29	Modeling the behavior of inclusions in circular plates undergoing shape changes from two to three dimensions. Physical Review E, 2019, 100, 043001.	0.8	7
30	Rýcktitelbild: Organization of Particle Islands through Light-Powered Fluid Pumping (Angew. Chem.) Tj ETQq0	0 9.rgBT /0	Overlock 10 T
31	Fight the flow: the role of shear in artificial rheotaxis for individual and collective motion. Nanoscale, 2019, 11, 10944-10951.	2.8	32
32	Collaboration and competition between active sheets for self-propelled particles. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 9257-9262.	3.3	10
33	Light-Induced Convective Segregation of Different Sized Microparticles. ACS Applied Materials & Samp; Interfaces, 2019, 11, 18004-18012.	4.0	14
34	Modeling the formation of double rolls from heterogeneously patterned gels. Physical Review E, 2019, 99, 033003.	0.8	7
35	Self-Organization of Fluids in a Multienzymatic Pump System. Langmuir, 2019, 35, 3724-3732.	1.6	30
36	Achieving self-sustained motion of particles in solution with chemical pumps., 2019,, 223-249.		0

#	Article	IF	CITATIONS
37	Organization of Particle Islands through Lightâ€Powered Fluid Pumping. Angewandte Chemie - International Edition, 2019, 58, 2295-2299.	7.2	15
38	"Patterning with loops―to dynamically reconfigure polymer gels. Soft Matter, 2018, 14, 3361-3371.	1.2	8
39	Optimizing Micromixer Surfaces To Deter Biofouling. ACS Applied Materials & Samp; Interfaces, 2018, 10, 8374-8383.	4.0	2
40	Fibers on the surface of thermo-responsive gels induce 3D shape changes. Soft Matter, 2018, 14, 1822-1832.	1.2	8
41	Flow-Driven Assembly of Microcapsules into Three-Dimensional Towers. Langmuir, 2018, 34, 2890-2899.	1.6	4
42	Designing polymer gels and composites that undergo bio-inspired phototactic reconfiguration and motion. Bioinspiration and Biomimetics, 2018, 13, 035004.	1.5	7
43	Modeling Biofilm Formation on Dynamically Reconfigurable Composite Surfaces. Langmuir, 2018, 34, 1807-1816.	1.6	4
44	Tailoring the mechanical properties of nanoparticle networks that encompass biomimetic catch bonds. Journal of Polymer Science, Part B: Polymer Physics, 2018, 56, 105-118.	2.4	12
45	Structurally Tailored and Engineered Macromolecular (STEM) Gels as Soft Elastomers and Hard/Soft Interfaces. Macromolecules, 2018, 51, 9184-9191.	2,2	31
46	Intelligent Nano/Micromotors: Using Free Energy To Fabricate Organized Systems Driven Far from Equilibrium. Accounts of Chemical Research, 2018, 51, 2979-2979.	7.6	18
47	Designing self-propelled, chemically active sheets: Wrappers, flappers, and creepers. Science Advances, 2018, 4, eaav1745.	4.7	26
48	Multiresponsive polymeric microstructures with encoded predetermined and self-regulated deformability. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 12950-12955.	3.3	91
49	Using Chemical Pumps and Motors To Design Flows for Directed Particle Assembly. Accounts of Chemical Research, 2018, 51, 2672-2680.	7.6	13
50	Phase Transitions and Pattern Formation in Chemoâ€Responsive Gels and Composites. Israel Journal of Chemistry, 2018, 58, 693-705.	1.0	4
51	Transformable Materials: Structurally Tailored and Engineered Macromolecular (STEM) Gels by Controlled Radical Polymerization. Macromolecules, 2018, 51, 3808-3817.	2.2	56
52	Tuning the synchronization of a network of weakly coupled self-oscillating gels via capacitors. Chaos, 2018, 28, 053106.	1.0	2
53	Detecting spatial defects in colored patterns using self-oscillating gels. Journal of Applied Physics, 2018, 123, 215107.	1.1	3
54	Delamination of a thin sheet from a soft adhesive Winkler substrate. Physical Review E, 2018, 97, 062803.	0.8	15

#	Article	IF	CITATIONS
55	Living Additive Manufacturing: Transformation of Parent Gels into Diversely Functionalized Daughter Gels Made Possible by Visible Light Photoredox Catalysis. ACS Central Science, 2017, 3, 124-134.	5.3	146
56	Photo-regeneration of severed gel with iniferter-mediated photo-growth. Soft Matter, 2017, 13, 1978-1987.	1.2	20
57	Modeling the formation of layered, amphiphilic gels. Polymer, 2017, 111, 214-221.	1.8	15
58	Harnessing catalytic pumps for directional delivery of microparticles in microchambers. Nature Communications, 2017, 8, 14384.	5.8	58
59	Using Torsion for Controllable Reconfiguration of Binary Nanoparticle Networks. ACS Nano, 2017, 11, 3059-3066.	7.3	2
60	Designing self-powered materials systems that perform pattern recognition. Chemical Communications, 2017, 53, 7692-7706.	2.2	12
61	Solutal and thermal buoyancy effects in self-powered phosphatase micropumps. Soft Matter, 2017, 13, 2800-2807.	1.2	57
62	Photoactivated Structurally Tailored and Engineered Macromolecular (STEM) gels as precursors for materials with spatially differentiated mechanical properties. Polymer, 2017, 126, 224-230.	1.8	28
63	Synthetic quorum sensing in model microcapsule colonies. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 8475-8480.	3.3	9
64	Convective Self-Sustained Motion in Mixtures of Chemically Active and Passive Particles. Langmuir, 2017, 33, 7873-7880.	1.6	23
65	Effects of morphology on the mechanical properties of heterogeneous polymer-grafted nanoparticle networks. Molecular Systems Design and Engineering, 2017, 2, 490-499.	1.7	3
66	Combining ATRP and FRP Gels: Soft Gluing of Polymeric Materials for the Fabrication of Stackable Gels. Polymers, 2017, 9, 186.	2.0	10
67	Tailoring the structure of polymer networks with iniferter-mediated photo-growth. Polymer Chemistry, 2016, 7, 2955-2964.	1.9	40
68	Miktoarm star copolymers as interfacial connectors for stackable amphiphilic gels. Polymer, 2016, 101, 406-414.	1.8	17
69	Embedding flexible fibers into responsive gels to create composites with controllable dexterity. Soft Matter, 2016, 12, 9170-9184.	1.2	6
70	Harnessing Cooperative Interactions between Thermoresponsive Aptamers and Gels To Trap and Release Nanoparticles. ACS Applied Materials & Samp; Interfaces, 2016, 8, 30475-30483.	4.0	8
71	Harnessing surface-bound enzymatic reactions to organize microcapsules in solution. Science Advances, 2016, 2, e1501835.	4.7	23
72	Pattern recognition with "materials that compute― Science Advances, 2016, 2, e1601114.	4.7	42

#	Article	IF	CITATIONS
73	Computational modeling of oscillating fins that "catch and release―targeted nanoparticles in bilayer flows. Soft Matter, 2016, 12, 1374-1384.	1.2	11
74	Convective flow reversal in self-powered enzyme micropumps. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 2585-2590.	3.3	78
75	Tuning the Mechanical Properties of Polymer-Grafted Nanoparticle Networks through the Use of Biomimetic Catch Bonds. Macromolecules, 2016, 49, 1353-1361.	2.2	20
76	Computational design of microscopic swimmers and capsules: From directed motion to collective behavior. Current Opinion in Colloid and Interface Science, 2016, 21, 44-56.	3.4	8
77	Stimuli-responsive behavior of composites integrating thermo-responsive gels with photo-responsive fibers. Materials Horizons, 2016, 3, 53-62.	6.4	114
78	Modeling the entrainment of self-oscillating gels to periodic mechanical deformation. Chaos, 2015, 25, 064302.	1.0	10
79	Stackable, Covalently Fused Gels: Repair and Composite Formation. Macromolecules, 2015, 48, 1169-1178.	2.2	30
80	Designing Composite Coatings That Provide a Dual Defense against Fouling. Langmuir, 2015, 31, 7524-7532.	1.6	16
81	Achieving synchronization with active hybrid materials: Coupling self-oscillating gels and piezoelectric films. Scientific Reports, 2015, 5, 11577.	1.6	12
82	Harnessing biomimetic catch bonds to create mechanically robust nanoparticle networks. Polymer, 2015, 69, 310-320.	1.8	15
83	Designing Dual-functionalized Gels for Self-reconfiguration and Autonomous Motion. Scientific Reports, 2015, 5, 9569.	1.6	13
84	An aptamer-functionalized chemomechanically modulated biomolecule catch-and-release system. Nature Chemistry, 2015, 7, 447-454.	6.6	128
85	Modeling free radical polymerization using dissipative particle dynamics. Polymer, 2015, 72, 217-225.	1.8	48
86	Self-assembly of microcapsules regulated via the repressilator signaling network. Soft Matter, 2015, 11, 3542-3549.	1.2	16
87	Self-Propelled Nanomotors Autonomously Seek and Repair Cracks. Nano Letters, 2015, 15, 7077-7085.	4.5	123
88	Designing Synthetic Microcapsules That Undergo Biomimetic Communication and Autonomous Motion. Langmuir, 2015, 31, 11951-11963.	1.6	7
89	Designing a gel–fiber composite to extract nanoparticles from solution. Soft Matter, 2015, 11, 8692-8700.	1.2	12
90	Ductility, toughness and strain recovery in self-healing dual cross-linked nanoparticle networks studied by computer simulations. Progress in Polymer Science, 2015, 40, 121-137.	11.8	35

#	Article	IF	Citations
91	Designing biomimetic reactive polymer gels. Materials Today, 2014, 17, 486-493.	8.3	7
92	Dynamic behavior of dual cross-linked nanoparticle networks under oscillatory shear. New Journal of Physics, 2014, 16, 075009.	1.2	11
93	Cooperative, Reversible Selfâ€Assembly of Covalently Preâ€Linked Proteins into Giant Fibrous Structures. Angewandte Chemie - International Edition, 2014, 53, 8050-8055.	7.2	32
94	Picking up Nanoparticles with Functional Droplets. Advanced Materials Interfaces, 2014, 1, 1400121.	1.9	8
95	MODELING STIMULI-INDUCED RECONFIGURATION AND DIRECTED MOTION OF RESPONSIVE GELS. World Scientific Lecture Notes in Complex Systems, 2014, , 149-168.	0.1	0
96	Modeling polymer grafted nanoparticle networks reinforced by high-strength chains. Soft Matter, 2014, 10, 1374-1383.	1.2	28
97	Modeling Chemoresponsive Polymer Gels. Annual Review of Chemical and Biomolecular Engineering, 2014, 5, 35-54.	3.3	21
98	Forming self-rotating pinwheels from assemblies of oscillating polymer gels. Materials Horizons, 2014, 1, 125-132.	6.4	8
99	Using light to control the interactions between self-rotating assemblies of active gels. Polymer, 2014, 55, 5924-5932.	1.8	4
100	Reconfigurable soft matter. Soft Matter, 2014, 10, 1244.	1.2	9
101	Fluid-driven motion of passive cilia enables the layer to expel sticky particles. Soft Matter, 2014, 10, 1416-1427.	1.2	17
102	Designing Mechanomutable Composites: Reconfiguring the Structure of Nanoparticle Networks through Mechanical Deformation. Nano Letters, 2014, 14, 4745-4750.	4.5	11
103	Directing the Behavior of Active, Self-Oscillating Gels with Light. Macromolecules, 2014, 47, 3231-3242.	2.2	20
104	Designing Bioinspired Artificial Cilia to Regulate Particle–Surface Interactions. Journal of Physical Chemistry Letters, 2014, 5, 1691-1700.	2.1	22
105	Strain recovery and self-healing in dual cross-linked nanoparticle networks. Polymer Chemistry, 2013, 4, 4927.	1.9	33
106	Modeling the Photoinduced Reconfiguration and Directed Motion of Polymer Gels. Advanced Functional Materials, 2013, 23, 4601-4610.	7.8	56
107	Chemo-responsive, self-oscillating gels that undergo biomimetic communication. Chemical Society Reviews, 2013, 42, 7257.	18.7	54
108	Using Light To Guide the Motion of Nanorods in Photoresponsive Binary Blends: Designing Hierarchically Structured Nanocomposites. Langmuir, 2013, 29, 12785-12795.	1.6	1

#	Article	IF	Citations
109	"Zeroâ€Dimensional―Singleâ€Walled Carbon Nanotubes. Angewandte Chemie - International Edition, 2013, 52, 11308-11312.	7.2	13
110	Active Ciliated Surfaces Expel Model Swimmers. Langmuir, 2013, 29, 12770-12776.	1.6	21
111	Harnessing Interfacially-Active Nanorods to Regenerate Severed Polymer Gels. Nano Letters, 2013, 13, 6269-6274.	4.5	75
112	Modeling the response of dual cross-linked nanoparticle networks to mechanical deformation. Soft Matter, 2013, 9, 109-121.	1.2	50
113	Nano-pipette directed transport of nanotube transmembrane channels and hybrid vesicles. Nanoscale, 2013, 5, 9773.	2.8	9
114	Reconfigurable assemblies of active, autochemotactic gels. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 431-436.	3.3	31
115	UV patternable thin film chemistry for shape and functionally versatile self-oscillating gels. Soft Matter, 2013, 9, 1231-1243.	1.2	52
116	Stiffness-modulated motion of soft microscopic particles over active adhesive cilia. Soft Matter, 2013, 9, 3945.	1.2	12
117	Polymer Gels: Modeling the Photoinduced Reconfiguration and Directed Motion of Polymer Gels (Adv.) Tj ETQq1 1	9.784314 7.8	1 rgBT /Ove
118	Coassembly of Nanorods and Photosensitive Binary Blends: "Combing―with Light To Create Periodically Ordered Nanocomposites. Langmuir, 2013, 29, 750-760.	1.6	7
119	Harnessing Fluid-Driven Vesicles To Pick Up and Drop Off Janus Particles. ACS Nano, 2013, 7, 1224-1238.	7.3	49
120	Size Selectivity in Artificial Cilia–Particle Interactions: Mimicking the Behavior of Suspension Feeders. Langmuir, 2013, 29, 4616-4621.	1.6	18
121	Self-Healing Vesicles Deposit Lipid-Coated Janus Particles into Nanoscopic Trenches. Langmuir, 2013, 29, 16066-16074.	1.6	20
122	Wasted loops quantified. Nature, 2013, 493, 172-173.	13.7	5
123	Designing Tunable Bio-nanostructured Materials via Self-Assembly of Amphiphilic Lipids and Functionalized Nanotubes. Materials Research Society Symposia Proceedings, 2012, 1464, 21.	0.1	1
124	Promoting Network Formation in Nanorod-filled Binary Blends. Materials Research Society Symposia Proceedings, 2012, 1411, 75.	0.1	O
125	Modeling the Transport of Nanoparticle-Filled Binary Fluids through Micropores. Langmuir, 2012, 28, 11410-11421.	1.6	27
126	Chemical Oscillators in Structured Media. Accounts of Chemical Research, 2012, 45, 2160-2168.	7.6	63

#	Article	IF	CITATIONS
127	Probing and repairing damaged surfaces with nanoparticle-containing microcapsules. Nature Nanotechnology, 2012, 7, 87-90.	15.6	56
128	Fibers with Integrated Mechanochemical Switches: Minimalistic Design Principles Derived from Fibronectin. Biophysical Journal, 2012, 103, 1909-1918.	0.2	27
129	Designing mechano-responsive microcapsules that undergo self-propelled motion. Soft Matter, 2012, 8, 180-190.	1.2	20
130	Modeling the making and breaking of bonds as an elastic microcapsule moves over a compliant substrate. Soft Matter, 2012, 8, 77-85.	1.2	10
131	Chemically-mediated communication in self-oscillating, biomimetic cilia. Journal of Materials Chemistry, 2012, 22, 241-250.	6.7	43
132	Controlling the dynamic behavior of heterogeneous self-oscillating gels. Journal of Materials Chemistry, 2012, 22, 13625.	6.7	51
133	Self-Healing Polymer Films Based on Thiol–Disulfide Exchange Reactions and Self-Healing Kinetics Measured Using Atomic Force Microscopy. Macromolecules, 2012, 45, 142-149.	2.2	407
134	Propulsion and Trapping of Microparticles by Active Cilia Arrays. Langmuir, 2012, 28, 3217-3226.	1.6	35
135	Mechano-chemical oscillations and waves in reactive gels. Reports on Progress in Physics, 2012, 75, 066601.	8.1	64
136	Synthetic homeostatic materials with chemo-mechano-chemical self-regulation. Nature, 2012, 487, 214-218.	13.7	418
137	Mechanical Resuscitation of Chemical Oscillations in Belousov–Zhabotinsky Gels. Advanced Functional Materials, 2012, 22, 2535-2541.	7.8	49
138	Shape- and size-dependent patterns in self-oscillating polymer gels. Soft Matter, 2011, 7, 3141.	1.2	63
139	Forming transmembrane channels using end-functionalized nanotubes. Nanoscale, 2011, 3, 240-250.	2.8	38
140	Exploiting gradients in cross-link density to control the bending and self-propelled motion of active gels. Journal of Materials Chemistry, 2011, 21, 8360.	6.7	51
141	Self-assembly of nanorods in ternary mixtures: promoting the percolation of the rods and creating interfacially jammed gels. Journal of Materials Chemistry, 2011, 21, 14178.	6.7	8
142	Kinetically Trapped Co-continuous Polymer Morphologies through Intraphase Gelation of Nanoparticles. Nano Letters, 2011, 11, 1997-2003.	4.5	107
143	Using Mesoscopic Models to Design Strong and Tough Biomimetic Polymer Networks. Langmuir, 2011, 27, 13796-13805.	1.6	20

UV-enhanced Ordering in Azobenzene-Containing Polystyrene-<i>block</i>-Poly(<i>n</i>-Poly(<i>n</i>-Butyl) Tj ETQq0 0 0 rgBT LQverlock 10 Tf 50 62

#	Article	IF	Citations
145	Tailoring the Trajectory of Cell Rolling with Cytotactic Surfaces. Langmuir, 2011, 27, 15345-15351.	1.6	7
146	Phase Behavior and Photoresponse of Azobenzene-Containing Polystyrene- <i>block</i> poly(<i>n</i> -butyl methacrylate) Block Copolymers. Macromolecules, 2011, 44, 1125-1131.	2.2	16
147	Role of Parallel Reformable Bonds in the Self-Healing of Cross-Linked Nanogel Particles. Langmuir, 2011, 27, 3991-4003.	1.6	26
148	Self-assembly of mixtures of nanorods in binary, phase-separating blends. Soft Matter, 2011, 7, 595-607.	1.2	41
149	Modeling the Self-Assembly of Lipids and Nanotubes in Solution: Forming Vesicles and Bicelles with Transmembrane Nanotube Channels. ACS Nano, 2011, 5, 4769-4782.	7.3	61
150	Designing self-propelled microcapsules for pick-up and delivery of microscopic cargo. Soft Matter, 2011, 7, 3168.	1.2	21
151	Photocontrol over the Disorder-to-Order Transition in Thin Films of Polystyrene- <i>block</i> -poly(methyl methacrylate) Block Copolymers Containing Photodimerizable Anthracene Functionality. Journal of the American Chemical Society, 2011, 133, 17217-17224.	6.6	23
152	Interactions of End-functionalized Nanotubes with Lipid Vesicles: Spontaneous Insertion and Nanotube Self-Organization. Current Nanoscience, 2011, 7, 699-715.	0.7	25
153	Modeling the nanoscratching of self-healing materials. Journal of Chemical Physics, 2011, 134, 084901.	1.2	13
154	Design rules for creating sensing and self-actuating microcapsules. Smart Structures and Systems, 2011, 7, 199-211.	1.9	3
155	Designing Oscillating Cilia That Capture or Release Microscopic Particles. Langmuir, 2010, 26, 2963-2968.	1.6	50
156	Modeling autonomously oscillating chemo-responsive gels. Progress in Polymer Science, 2010, 35, 155-173.	11.8	82
157	Copying from nature: Designing adaptive, chemoresponsive gels. Journal of Polymer Science, Part B: Polymer Physics, 2010, 48, 2533-2541.	2.4	7
158	Designing communicating colonies of biomimetic microcapsules. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 12417-12422.	3.3	43
159	Computational Design of Active, Self-Reinforcing Gels. Journal of Physical Chemistry B, 2010, 114, 6316-6322.	1.2	33
160	Using Nanoparticle-Filled Microcapsules for Site-Specific Healing of Damaged Substrates: Creating a "Repair-and-Go―System. ACS Nano, 2010, 4, 1115-1123.	7.3	52
161	Designing autonomously motile gels that follow complex paths. Soft Matter, 2010, 6, 768-773.	1.2	36
162	Redox Responsive Behavior of Thiol/Disulfide-Functionalized Star Polymers Synthesized via Atom Transfer Radical Polymerization. Macromolecules, 2010, 43, 4133-4139.	2.2	159

#	Article	IF	CITATIONS
163	Biomimetic chemical signaling across synthetic microcapsule arrays. Journal of Materials Chemistry, 2010, 20, 10384.	6.7	13
164	Designing microcapsule arrays that propagate chemical signals. Physical Review E, 2010, 82, 021801.	0.8	6
165	Emerging themes in soft matter: responsive and active soft materials. Soft Matter, 2010, 6, 703.	1.2	7
166	Controlling chemical oscillations in heterogeneous Belousov-Zhabotinsky gels via mechanical strain. Physical Review E, 2009, 79, 046214.	0.8	25
167	Spatial confinement controls self-oscillations in polymer gels undergoing the Belousov-Zhabotinsky reaction. Physical Review E, 2009, 80, 056208.	0.8	11
168	Emergent or Just Complex?. Science, 2009, 325, 1632-1634.	6.0	33
169	Synthesis of Photoisomerizable Block Copolymers by Atom Transfer Radical Polymerization. Macromolecular Chemistry and Physics, 2009, 210, 1484-1492.	1.1	10
170	Modeling the Interactions between Membranes and Inclusions: Designing Selfâ€Cleaning Films and Resealing Pores. Macromolecular Theory and Simulations, 2009, 18, 11-24.	0.6	8
171	Self-Sustained Motion of a Train of Haptotactic Microcapsules. Langmuir, 2009, 25, 9644-9647.	1.6	10
172	Harnessing Labile Bonds between Nanogel Particles to Create Self-Healing Materials. ACS Nano, 2009, 3, 885-892.	7.3	80
173	Using Light to Guide the Self-Sustained Motion of Active Gels. Langmuir, 2009, 25, 4298-4301.	1.6	60
174	Effect of encapsulated polymers and nanoparticles on shear deformation of droplets. Soft Matter, 2009, 5, 850.	1.2	2
175	Shear and extensional deformation of droplets containing polymers and nanoparticles. Journal of Chemical Physics, 2009, 130, 234905.	1.2	14
176	Global signaling of localized impact in chemo-responsive gels. Soft Matter, 2009, 5, 1835.	1.2	23
177	Forming ordered structures in ternary, photosensitive blends through the use of masks. Soft Matter, 2009, 5, 1205-1213.	1.2	3
178	Flow injection of polymers into nanopores. Soft Matter, 2009, 5, 4575.	1.2	42
179	New approaches for designing †programmable†microfluidic devices. Polymer International, 2008, 57, 669-671.	1.6	1
180	Harnessing Janus Nanoparticles to Create Controllable Pores in Membranes. ACS Nano, 2008, 2, 1117-1122.	7. 3	182

#	Article	IF	Citations
181	Using a Single Mask to Create Multiple Patterns in Three-Component, Photoreactive Blends. Langmuir, 2008, 24, 1621-1624.	1.6	11
182	Modeling Microcapsules That Communicate through Nanoparticles To Undergo Self-Propelled Motion. ACS Nano, 2008, 2, 471-476.	7.3	35
183	Designing Synthetic, Pumping Cilia That Switch the Flow Direction in Microchannels. Langmuir, 2008, 24, 12102-12106.	1.6	59
184	Gradient Sensing in Reactive, Ternary Membranes. Langmuir, 2008, 24, 1878-1883.	1.6	1
185	Designing patterned substrates to regulate the movement of capsules in microchannels. Journal of Chemical Physics, 2008, 128, 235102.	1.2	7
186	Chemomechanical synchronization in heterogeneous self-oscillating gels. Physical Review E, 2008, 77, 046210.	0.8	25
187	Three-dimensional model for chemoresponsive polymer gels undergoing the Belousov-Zhabotinsky reaction. Physical Review E, 2008, 78, 041406.	0.8	78
188	Designing synthetic vesicles that engulf nanoscopic particles. Journal of Chemical Physics, 2007, 127, 084703.	1.2	130
189	Modeling the interactions between compliant microcapsules and pillars in microchannels. Journal of Chemical Physics, 2007, 127, 034703.	1.2	11
190	Modeling multicomponent reactive membranes. Physical Review E, 2007, 75, 051906.	0.8	6
191	Producing swimmers by coupling reaction-diffusion equations to a chemically responsive material. Physical Review E, 2007, 76, 016308.	0.8	12
192	Mechanisms for fragment formation in brittle solids. Physical Review E, 2007, 75, 056105.	0.8	5
193	Modeling Self-Assembly and Phase Behavior in Complex Mixtures. Annual Review of Physical Chemistry, 2007, 58, 211-233.	4.8	29
194	Patterned Surfaces Segregate Compliant Microcapsules. Langmuir, 2007, 23, 983-987.	1.6	63
195	Theoretical and computational modeling of self-oscillating polymer gels. Journal of Chemical Physics, 2007, 126, 124707.	1.2	107
196	Designing smart systems to selectively entrap and burst microcapsules. Soft Matter, 2007, 3, 1500.	1.2	45
197	Mechanically induced chemical oscillations and motion in responsive gels. Soft Matter, 2007, 3, 1138.	1.2	48
198	Designing Constricted Microchannels To Selectively Entrap Soft Particles. Macromolecules, 2007, 40, 5176-5181.	2.2	21

#	Article	IF	CITATIONS
199	Fork in the Road:  Patterned Surfaces Direct Microcapsules to Make a Decision. Langmuir, 2007, 23, 10887-10890.	1.6	24
200	Force-Induced Globule-Coil Transition in Single Polystyrene Chains in Water. Journal of the American Chemical Society, 2007, 129, 10046-10047.	6.6	58
201	Healing substrates with mobile, particle-filled microcapsules: designing a â€repair and go' system. Journal of the Royal Society Interface, 2007, 4, 349-357.	1.5	52
202	Modeling self-healing materials. Materials Today, 2007, 10, 18-23.	8.3	112
203	Economy at the nanoscale. Nature Materials, 2007, 6, 94-95.	13.3	23
204	Modeling Polymer Gels Exhibiting Self-Oscillations Due to the Belousovâ^'Zhabotinsky Reaction. Macromolecules, 2006, 39, 2024-2026.	2.2	82
205	Modeling the interactions between deformable capsules rolling on a compliant surface. Soft Matter, 2006, 2, 499.	1.2	33
206	Designing a Simple Ratcheting System to Sort Microcapsules by Mechanical Properties. Langmuir, 2006, 22, 6739-6742.	1.6	30
207	Pattern Formation and Shape Changes in Self-Oscillating Polymer Gels. Science, 2006, 314, 798-801.	6.0	218
208	Exploiting Photoinduced Reactions in Polymer Blends to Create Hierarchically Ordered, Defect-Free Materials. Langmuir, 2006, 22, 2620-2628.	1.6	40
209	Nanoparticle Polymer Composites: Where Two Small Worlds Meet. Science, 2006, 314, 1107-1110.	6.0	2,332
210	Determining the phase behavior of nanoparticle-filled binary blends. Journal of Polymer Science, Part B: Polymer Physics, 2006, 44, 2389-2403.	2.4	64
211	Motion of compliant capsules on corrugated surfaces: A means of sorting by mechanical properties. Journal of Polymer Science, Part B: Polymer Physics, 2006, 44, 2667-2678.	2.4	9
212	Entropy-driven segregation of nanoparticles to cracks in multilayered composite polymer structures. Nature Materials, 2006, 5, 229-233.	13.3	331
213	Selective ordering of surfactant modified gold nanoparticles in a diblock copolymer. European Polymer Journal, 2006, 42, 2045-2052.	2.6	21
214	Modeling the release of nanoparticles from mobile microcapsules. Journal of Chemical Physics, 2006, 125, 224712.	1.2	43
215	Designing Compliant Substrates to Regulate the Motion of Vesicles. Physical Review Letters, 2006, 96, 148103.	2.9	57
216	Dynamics of ternary mixtures with photosensitive chemical reactions: Creating three-dimensionally ordered blends. Physical Review E, 2006, 74, 011502.	0.8	27

#	Article	IF	Citations
217	Self-directed self-assembly of nanoparticle/copolymer mixtures. Nature, 2005, 434, 55-59.	13.7	912
218	Challenges in polymer science: Controlling vesicle-substrate interactions. Journal of Polymer Science, Part B: Polymer Physics, 2005, 43, 3357-3360.	2.4	5
219	Modeling the morphology and mechanical properties of sheared ternary mixtures. Journal of Chemical Physics, 2005, 122, 194906.	1.2	28
220	Local Control of Periodic Pattern Formation in Binary Fluids within Microchannels. Physical Review Letters, 2005, 95, 240603.	2.9	3
221	Convection-driven pattern formation in phase-separating binary fluids. Physical Review E, 2005, 71, 030501.	0.8	15
222	Pattern formation arising from condensation of a homogeneous gas into a binary, phase-separating liquid. Physical Review E, 2005, 72, 021505.	0.8	3
223	Modeling the flow of fluid/particle mixtures in microchannels: Encapsulating nanoparticles within monodisperse droplets. Journal of Chemical Physics, 2005, 123, 224706.	1.2	36
224	Modeling the flow of complex fluids through heterogeneous channels. Soft Matter, 2005, 1, 44.	1.2	19
225	Healing Surface Defects with Nanoparticle-Filled Polymer Coatings:  Effect of Particle Geometry. Macromolecules, 2005, 38, 10138-10147.	2.2	39
226	Modeling the Motion of Microcapsules on Compliant Polymeric Surfaces. Macromolecules, 2005, 38, 10244-10260.	2.2	92
227	Harnessing Light to Create Defect-Free, Hierarchically Structured Polymeric Materials. Langmuir, 2005, 21, 10912-10915.	1.6	30
228	Micromechanical Simulation of the Deformation and Fracture of Polymer Blends. Macromolecules, 2005, 38, 488-500.	2.2	28
229	Newtonian fluid meets an elastic solid: Coupling lattice Boltzmann and lattice-spring models. Physical Review E, 2005, 71, 056707.	0.8	80
230	Effect of hydrodynamic interactions on the evolution of chemically reactive ternary mixtures. Journal of Chemical Physics, 2004, 121, 6052-6063.	1.2	22
231	Modeling the dynamic fracture of polymer blends processed under shear. Physical Review B, 2004, 69, .	1.1	34
232	Pattern Formation in Binary Fluids Confined between Rough, Chemically Heterogeneous Surfaces. Physical Review Letters, 2004, 93, 184501.	2.9	30
233	Interdiffusion in a polydisperse polymer blend. Journal of Chemical Physics, 2004, 121, 2833.	1.2	8
234	Structures formation in binary fluids driven through patterned microchannels: effect of hydrodynamics and arrangement of surface patterns. Physica D: Nonlinear Phenomena, 2004, 198, 319-332.	1.3	8

#	Article	IF	Citations
235	Predicting the Mechanical and Electrical Properties of Nanocomposites Formed from Polymer Blends and Nanorods. Molecular Simulation, 2004, 30, 249-257.	0.9	75
236	Using nanoparticles to create self-healing composites. Journal of Chemical Physics, 2004, 121, 5531-5540.	1.2	186
237	Self-Assembly of Amphiphilic Nanoparticleâ^'Coil "Tadpole―Macromolecules. Macromolecules, 2004, 37, 3536-3539.	2.2	59
238	Using Nanocomposite Coatings To Heal Surface Defects. Macromolecules, 2004, 37, 9160-9168.	2.2	98
239	Theoretical model of interfacial polymerization. Journal of Chemical Physics, 2004, 121, 11440.	1.2	23
240	Predicting the Mechanical Properties of Binary Blends of Immiscible Polymers. Journal of Materials Science, 2003, 11, 175-186.	1.2	15
241	Macromolecules at surfaces: Research challenges and opportunities from tribology to biology. Journal of Polymer Science, Part B: Polymer Physics, 2003, 41, 2755-2793.	2.4	151
242	Computer Simulation of Morphologies and Optical Properties of Filled Diblock Copolymers. Macromolecules, 2003, 36, 9631-9637.	2.2	52
243	Predicting the Morphologies of Confined Copolymer/Nanoparticle Mixtures. Macromolecules, 2003, 36, 7730-7739.	2.2	111
244	Predicting the morphology of nanostructured composites. Current Opinion in Solid State and Materials Science, 2003, 7, 27-33.	5.6	35
245	Self-assembly of a binary mixture of particles and diblock copolymers. Faraday Discussions, 2003, 123, 121-131.	1.6	24
246	Predicting the self-assembled morphology and mechanical properties of mixtures of diblocks and rod-like nanoparticles. Composite Interfaces, 2003, 10, 343-368.	1.3	43
247	Simulating the morphology and mechanical properties of filled diblock copolymers. Physical Review E, 2003, 67, 031802.	0.8	71
248	Periodic Droplet Formation in Chemically Patterned Microchannels. Physical Review Letters, 2003, 91, 108303.	2.9	40
249	Modeling reactive compatibilization of a binary blend with interacting particles. Journal of Chemical Physics, 2003, 118, 9044-9052.	1.2	12
250	Diffusive intertwining of two fluid phases in chemically patterned microchannels. Physical Review E, 2003, 68, 051505.	0.8	19
251	Effect of particle size and shape on the order–disorder phase transition in diblock copolymers. Journal of Chemical Physics, 2003, 119, 3529-3534.	1.2	31
252	Modeling the Self-Assembly of Copolymer-Nanoparticle Mixtures Confined between Solid Surfaces. Physical Review Letters, 2003, 91, 136103.	2.9	140

#	Article	IF	CITATIONS
253	Simulating the dynamic behavior of immiscible binary fluids in three-dimensional chemically patterned microchannels. Physical Review E, 2003, 68, 011502.	0.8	19
254	Entropically Driven Formation of Hierarchically Ordered Nanocomposites. Physical Review Letters, 2002, 89, 155503.	2.9	90
255	Binary hard sphere mixtures in block copolymer melts. Physical Review E, 2002, 66, 031801.	0.8	33
256	Using patterned substrates to promote mixing in microchannels. Physical Review E, 2002, 65, 031502.	0.8	36
257	Phase separation of a binary fluid in the presence of immobile particles: A lattice Boltzmann approach. Journal of Chemical Physics, 2002, 116, 6305-6310.	1.2	31
258	Effect of Nanoscopic Particles on the Mesophase Structure of Diblock Copolymers. Macromolecules, 2002, 35, 4855-4858.	2.2	133
259	Block Copolymer-Directed Assembly of Nanoparticles:Â Forming Mesoscopically Ordered Hybrid Materials. Macromolecules, 2002, 35, 1060-1071.	2.2	279
260	Lattice spring model of filled polymers and nanocomposites. Journal of Chemical Physics, 2002, 117, 7649-7658.	1.2	95
261	Three-dimensional simulations of diblock copolymer/particle composites. Polymer, 2002, 43, 461-466.	1.8	47
262	Predicting the Phase Behavior of Polymer-Clay Nanocomposites: The Role of End-Functionalized Chains. ACS Symposium Series, 2001, , 57-70.	0.5	2
263	Conformations of Bridging Polyelectrolytes in Poor Solvent:Â Single-Chain Self-Consistent Field Calculations. Langmuir, 2001, 17, 5111-5117.	1.6	21
264	Creating Localized Mixing Stations within Microfluidic Channels. Langmuir, 2001, 17, 7186-7190.	1.6	22
265	Effect of Stationary Particles on the Phase Separation of Binary Fluids. Materials Research Society Symposia Proceedings, 2001, 710, 1.	0.1	0
266	Predicting the Mesophases of Copolymer-Nanoparticle Composites. Science, 2001, 292, 2469-2472.	6.0	701
267	Spinodal decomposition of a binary fluid with fixed impurities. Journal of Chemical Physics, 2001, 115, 3779-3784.	1.2	39
268	Effect of polymer architecture on the miscibility of polymer/clay mixtures. Polymer International, 2000, 49, 469-471.	1.6	57
269	Behavior of confined telechelic chains under shear. Journal of Chemical Physics, 2000, 113, 2025-2031.	1.2	23
270	Scaling theory for end-functionalized polymers confined between two surfaces: Predictions for fabricating polymer/clay nanocomposites. Journal of Chemical Physics, 2000, 112, 4365-4375.	1.2	50

#	Article	IF	CITATIONS
271	Phase behavior of end-functionalized polymers confined between two surfaces. Journal of Chemical Physics, 2000, 113, 2479-2483.	1.2	27
272	Thermodynamic Behavior of Particle/Diblock Copolymer Mixtures:Â Simulation and Theory. Macromolecules, 2000, 33, 8085-8096.	2.2	250
273	Morphology of Ultrathin Supported Diblock Copolymer Films:Â Theory and Experiment. Macromolecules, 2000, 33, 5702-5712.	2.2	218
274	Forming Supramolecular Networks from Nanoscale Rods in Binary, Phase-Separating Mixtures. Science, 2000, 288, 1802-1804.	6.0	152
275	Modeling the Dynamic Behavior of Diblock Copolymer/Particle Composites. Macromolecules, 2000, 33, 6140-6147.	2.2	61
276	Theoretical Phase Diagrams of Polymer/Clay Composites:Â The Role of Grafted Organic Modifiers. Macromolecules, 2000, 33, 1089-1099.	2.2	187
277	Multi-Scale Model for Binary Mixtures Containing Nanoscopic Particles. Journal of Physical Chemistry B, 2000, 104, 3411-3422.	1.2	139
278	Effect of polymer architecture on the miscibility of polymer/clay mixtures. Polymer International, 2000, 49, 469-471.	1.6	1
279	Scaling Theory for End-Functionalized Polymers Confined Between Two Surfaces. Materials Research Society Symposia Proceedings, 2000, 629, 1.	0.1	0
280	TAILORING POLYMER INTERFACES THROUGH CONFINEMENT. , 2000, , 51-80.		0
281	Dynamics of the phase behavior of a polymer blend under shear flow. Physical Review E, 1999, 59,		
	603-611.	0.8	7
282		1.6	7 25
282	6ó3-611. Phase Separation under Shear of Binary Mixtures Containing Hard Particles. Langmuir, 1999, 15,		
	Phase Separation under Shear of Binary Mixtures Containing Hard Particles. Langmuir, 1999, 15, 4952-4956. Interactions of nanoscopic particles with phase-separating polymeric mixtures. Current Opinion in	1.6	25
283	Phase Separation under Shear of Binary Mixtures Containing Hard Particles. Langmuir, 1999, 15, 4952-4956. Interactions of nanoscopic particles with phase-separating polymeric mixtures. Current Opinion in Colloid and Interface Science, 1999, 4, 443-448. Calculating Phase Diagrams of Polymerâ 'Platelet Mixtures Using Density Functional Theory:Â	1.6 3.4	25 58
283	Phase Separation under Shear of Binary Mixtures Containing Hard Particles. Langmuir, 1999, 15, 4952-4956. Interactions of nanoscopic particles with phase-separating polymeric mixtures. Current Opinion in Colloid and Interface Science, 1999, 4, 443-448. Calculating Phase Diagrams of Polymerâ Platelet Mixtures Using Density Functional Theory:Â Implications for Polymer/Clay Composites. Macromolecules, 1999, 32, 5681-5688. Attraction between Surfaces in a Polymer Melt Containing Telechelic Chains:Â Guidelines for Controlling the Surface Separation in Intercalated Polymerâ Clay Composites. Langmuir, 1999, 15,	1.6 3.4 2.2	25 58 124
283 284 285	Phase Separation under Shear of Binary Mixtures Containing Hard Particles. Langmuir, 1999, 15, 4952-4956. Interactions of nanoscopic particles with phase-separating polymeric mixtures. Current Opinion in Colloid and Interface Science, 1999, 4, 443-448. Calculating Phase Diagrams of Polymerâ 'Platelet Mixtures Using Density Functional Theory:Â Implications for Polymer/Clay Composites. Macromolecules, 1999, 32, 5681-5688. Attraction between Surfaces in a Polymer Melt Containing Telechelic Chains:Â Guidelines for Controlling the Surface Separation in Intercalated Polymerâ 'Clay Composites. Langmuir, 1999, 15, 3935-3943. Simulation of Hard Particles in a Phase-Separating Binary Mixture. Physical Review Letters, 1999, 82,	1.6 3.4 2.2	25 58 124

#	Article	IF	CITATIONS
289	Calculating Phase Diagrams of Polymer-Clay Mixtures by Combining Density Functional and Self-Consistent Field Theory. Materials Research Society Symposia Proceedings, 1999, 576, 143.	0.1	O
290	Modeling the Interactions between Polymers and Clay Surfaces through Self-Consistent Field Theory. ACS Symposium Series, 1999, , 369-381.	0.5	1
291	Equilibrium behavior of confined triblock copolymer films. Macromolecular Theory and Simulations, 1998, 7, 249-255.	0.6	49
292	Stabilizing Properties of Copolymers Adsorbed on Heterogeneous Surfaces:Â A Model for the Interactions between a Polymer-Coated Influenza Virus and a Cell. Macromolecules, 1998, 31, 6369-6379.	2.2	18
293	Modeling the Interactions between Polymers and Clay Surfaces through Self-Consistent Field Theory. Macromolecules, 1998, 31, 8370-8381.	2.2	329
294	Modeling the Interactions between Atomic Force Microscope Tips and Polymeric Substrates. Langmuir, 1998, 14, 4615-4622.	1.6	10
295	Modeling the Phase Behavior of Polymerâ^'Clay Composites. Macromolecules, 1998, 31, 6676-6680.	2.2	185
296	Using tethered triblock copolymers to mediate the interaction between substrates. Journal of Chemical Physics, 1998, 108, 5981-5989.	1.2	16
297	Behavior of tethered polyelectrolytes in poor solvents. Journal of Chemical Physics, 1998, 108, 1175-1183.	1.2	33
298	Constrained free-energy functional of deformed polymer systems. Journal of Chemical Physics, 1997, 107, 7371-7382.	1.2	7
299	Dynamics of phase separation in polymer solutions under shear flow. Physical Review E, 1997, 55, R6344-R6347.	0.8	16
300	Patterned Polymer Films. MRS Bulletin, 1997, 22, 16-21.	1.7	9
301	Interactions between surfaces coated with solvophobic and solvophilic homopolymers. Macromolecular Symposia, 1997, 121, 269-277.	0.4	0
302	Attraction and Novel Phase Behavior between Like-Charged Polymer Layers. Macromolecules, 1997, 30, 7004-7007.	2.2	7
303	Equilibrium Orientation of Confined Diblock Copolymer Films. Macromolecules, 1997, 30, 3097-3103.	2.2	163
304	Phase Separation of Mixed Solvents within Polymer Brushes. Macromolecules, 1997, 30, 7588-7595.	2.2	16
305	Modeling the Interactions between Polymer-Coated Surfaces. Journal of Physical Chemistry B, 1997, 101, 10614-10624.	1.2	53
306	Improved Compatibilization of Immiscible Homopolymer Blends Using Copolymer Mixtures., 1997,, 17-31.		0

#	Article	IF	CITATIONS
307	Brownian Motion Simulation of Chain Pullout: Modeling Fracture in Polymer Blends. , 1997, , 33-40.		O
308	Behavior of Polyacid Chains Tethered to an Elastic Substrate. Macromolecules, 1996, 29, 5469-5474.	2.2	11
309	Self-Assembly of Tethered Diblocks in Selective Solvents. Macromolecules, 1996, 29, 8254-8259.	2.2	90
310	Using Copolymer Mixtures To Compatibilize Immiscible Homopolymer Blends. Macromolecules, 1996, 29, 7581-7587.	2.2	41
311	Effect of Composition on the Compatibilizing Activity of Comb Copolymers. Macromolecules, 1996, 29, 1059-1061.	2.2	22
312	A "Jumping Micelle―Phase Transition. Macromolecules, 1996, 29, 7637-7640.	2.2	25
313	Interactions between Polymer-Coated Surfaces in Poor Solvents. 1. Surfaces Grafted with A and B Homopolymers. Macromolecules, 1996, 29, 7559-7570.	2.2	43
314	Interactions between Polymer-Coated Surfaces in Poor Solvents. 2. Surfaces Coated with AB Diblock Copolymers. Macromolecules, 1996, 29, 8904-8911.	2.2	22
315	Designing Patterned Surfaces by Grafting Y-Shaped Copolymers. Macromolecules, 1996, 29, 2667-2673.	2.2	115
316	The behavior of grafted polymers in restricted geometries under poor solvent conditions. Journal of Chemical Physics, 1996, 104, 727-735.	1.2	5
317	Simulation of Fracturing Reinforced Polymer Blends. Physical Review Letters, 1996, 77, 671-674.	2.9	16
318	Compression of two polymerâ€coated surfaces in poor solvents. Journal of Chemical Physics, 1996, 105, 706-713.	1.2	28
319	Designing Compatibilizers To Reduce Interfacial Tension in Polymer Blends. The Journal of Physical Chemistry, 1996, 100, 1449-1458.	2.9	129
320	Forming Patterned Films with Tethered Diblock Copolymers. Macromolecules, 1996, 29, 6338-6348.	2.2	123
321	Tailoring the Structure of Polymer Brushes Through Copolymer Architecture. Materials Research Society Symposia Proceedings, 1995, 385, 201.	0.1	0
322	Using Monte Carlo simulations and self-consistent field theory to design interfacially active copolymers. Macromolecular Theory and Simulations, 1995, 4, 585-612.	0.6	10
323	Random copolymers as effective compatibilizing agents. Physical Review E, 1995, 52, 5061-5064.	0.8	42
324	Compatibilizing A/B blends with AB diblock copolymers: Effect of copolymer molecular weight. Journal of Chemical Physics, 1995, 102, 8149-8157.	1.2	76

#	Article	IF	CITATIONS
325	Designing Optimal Comb Compatibilizers: AC and BC Combs at an A/B Interface. Macromolecules, 1995, 28, 218-224.	2.2	20
326	Effect of Copolymer Architecture on the Efficiency of Compatibilizers. Macromolecules, 1995, 28, 6278-6283.	2.2	58
327	Modeling the Behavior of Random Copolymer Brushes. Macromolecules, 1995, 28, 4753-4755.	2.2	22
328	Computer Simulations of Self-Assembling Comb Copolymers. Langmuir, 1995, 11, 3848-3855.	1.6	8
329	Macrophase and Microphase Separation in Random Comb Copolymers. Macromolecules, 1995, 28, 3450-3462.	2.2	38
330	Cluster Formation in Grafted Polymers with Interactive End-Groups. Molecular Simulation, 1994, 13, 257-265.	0.9	6
331	Aggregation in grafted polymers with attractive end groups. Journal of Chemical Physics, 1994, 100, 9170-9174.	1.2	19
332	Theoretical models for grafted homopolymers in poor solvents: Observations of "dimpledrd surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1994, 86, 111-123.	2.3	3
333	Microphase Separation in Comb Copolymers. Macromolecules, 1994, 27, 2496-2502.	2.2	66
334	pH-Controlled Gating in Polymer Brushes. Macromolecules, 1994, 27, 6679-6682.	2.2	55
335	Contrasting the compatibilizing activity of comb and linear copolymers. Macromolecules, 1994, 27, 720-724.	2.2	48
336	Modeling of amphiphilic polymers and their interactions with nonionic surfactants. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1993, 75, 1-20.	2.3	13
337	Macro- vs microphase separation in copolymer/homopolymer mixtures. Macromolecules, 1993, 26, 2860-2865.	2.2	27
338	Effect of molecular architecture on polymer-surface adsorption. Accounts of Chemical Research, 1993, 26, 63-68.	7.6	13
339	Lateral instabilities in a grafted layer in a poor solvent. Macromolecules, 1993, 26, 1914-1921.	2.2	130
340	Interactions between linear polymers and amphiphilic combs in water: a molecular dynamics study. Langmuir, 1993, 9, 3402-3407.	1.6	2
341	A two-dimensional self-consistent-field model for grafted chains: determining the properties of grafted homopolymers in poor solvents. Macromolecules, 1993, 26, 4736-4738.	2.2	41
342	A theoretical model for copolymer–bilayer interactions. Journal of Chemical Physics, 1993, 99, 4168-4173.	1.2	2

#	Article	lF	Citations
343	Computational studies of protein adsorption at bilayer interfaces. Journal of Chemical Physics, 1993, 99, 7209-7213.	1.2	11
344	Copolymer adsorption onto regular surfaces. Journal of Chemical Physics, 1993, 99, 8244-8253.	1.2	8
345	Adsorption of copolymer chains at liquid-liquid interfaces: effect of sequence distribution. Macromolecules, 1992, 25, 1357-1360.	2.2	73
346	Folding kinetics of proteins and copolymers. Journal of Chemical Physics, 1992, 96, 768-780.	1.2	118
347	Behavior of amphiphilic comb copolymers in oil/water mixtures: a molecular dynamics study. Langmuir, 1992, 8, 2295-2300.	1.6	8
348	Adsorption of an alternating copolymer near a fluid-fluid interface. Macromolecules, 1992, 25, 3685-3688.	2.2	9
349	Miscible Polymer Blends: Local interaction energy theories and simulations. Advanced Materials, 1992, 4, 198-205.	11.1	25
350	Polymer adsorption on chemically heterogeneous substrates. Macromolecules, 1991, 24, 4918-4925.	2.2	35
351	Polymer adsorption on laterally heterogeneous surfaces: a Monte Carlo computer model. Macromolecules, 1991, 24, 714-717.	2.2	40
352	Effect of molecular architecture on the adsorption of copolymers. Macromolecules, 1991, 24, 168-176.	2,2	38
353	Adsorption of Copolymer Chains at Liquid-Liquid Interfaces: The Effect of Sequence Distribution. Materials Research Society Symposia Proceedings, 1991, 248, 413.	0.1	0
354	The effect of polymer geometry on polymer–surfactant association in solution. Journal of Chemical Physics, 1991, 95, 8467-8473.	1.2	5
355	Contrasting the surface adsorption of comb and linear polymers. Journal of Chemical Physics, 1991, 95, 3798-3803.	1.2	16
356	Modeling copolymer adsorption on laterally heterogeneous surfaces. Physical Review Letters, 1991, 66, 620-623.	2.9	42
357	Association and fragmentation in reverse micelles. Journal of Chemical Physics, 1990, 92, 2036-2042.	1.2	5
358	Computer simulation for structure formation from self-assembling polymers. Physical Review A, 1990, 41, 2109-2113.	1.0	8
359	Models for the surface adsorption of triblock copolymers. Macromolecules, 1990, 23, 839-848.	2.2	25
360	Adsorption of triblock copolymers on rough surfaces. Macromolecules, 1990, 23, 4641-4647.	2,2	14

#	Article	IF	Citations
361	Generalization of the lattice-fluid model for specific interactions. Macromolecules, 1989, 22, 2325-2331.	2.2	185
362	A computer model for the effect of surfactants on the aggregation of associating polymers. Langmuir, 1989, 5, 1253-1255.	1.6	11
363	Miscibility in ternary mixtures containing a copolymer and two homopolymers. Effect of sequence distribution. Macromolecules, 1989, 22, 4260-4267.	2.2	31
364	Effects of surfactant concentration on polymer-surfactant interactions in dilute solutions: a computer model. Langmuir, 1989, 5, 1230-1234.	1.6	19
365	A Computer Model for the Average "Cluster―Size in Polymer Aggregates. Materials Research Society Symposia Proceedings, 1989, 177, 65.	0.1	О
366	Effect of sequence distribution on the critical composition difference in copolymer blends. Macromolecules, 1988, 21, 1528-1530.	2.2	17
367	A computer simulation for the aggregation of associating polymers. Macromolecules, 1987, 20, 1999-2003.	2.2	31
368	The aggregation of reverse micelles. Cell Biophysics, 1987, 11, 91-97.	0.4	9
369	Effect of sequence distribution on the miscibility of polymer/copolymer blends. Macromolecules, 1985, 18, 2188-2191.	2.2	88
370	Copolymer/copolymer blends: effect of sequence distribution on miscibility. Macromolecules, 1985, 18, 2784-2786.	2.2	45
371	Kinetics of irreversible dissociation for proteins bound cooperatively to DNA. Biopolymers, 1984, 23, 1249-1259.	1.2	15
372	Reductive elimination of HH, HCH3, and CH3CH3 from bis(phosphine)platinum(II), -palladium(II), and -nickel(II) complexes: a theoretical study using the SCF-X.alphaSW method. Inorganic Chemistry, 1982, 21, 2162-2174.	1.9	38
373	Nuclear magnetic relaxation in an anisotropic environment. Journal of Magnetic Resonance, 1975, 20, 177-181.	0.5	3
374	Polyolefin/Clay Nanocomposites: Theory and Simulation., 0,, 415-448.		6
375	Supramolecular Networks Synthesized in Nanoparticle–Polymer Mixtures. , 0, , 4796-4804.		0
376	CHAPTER 7. Coupling Mechanics to Chemical Reactions to Create "Materials that Compute― RSC Polymer Chemistry Series, 0, , 167-193.	0.1	1