Yang-Hui Luo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5055236/publications.pdf

Version: 2024-02-01

		346980	388640
117	1,827	22	36
papers	citations	h-index	g-index
118	118	118	1786
110	110	110	1700
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	3D-to-2D Evolution triggered paramagnetic-to-antiferromagnetic transformation. Materials Today Chemistry, 2022, 25, 100923.	1.7	4
2	Porous frameworks for effective water adsorption: from 3D bulk to 2D nanosheets. Inorganic Chemistry Frontiers, 2021, 8, 898-913.	3.0	22
3	2D hydrogen-bonded organic frameworks: in-site generation and subsequent exfoliation. Chemical Communications, 2021, 57, 5901-5904.	2.2	17
4	Squarelike AgCl Nanoparticles Grown Using NiCl ₂ (Pyz) ₂ -Based Metal–Organic Framework Nanosheet Templates for Antibacterial Applications. ACS Applied Nano Materials, 2021, 4, 5541-5547.	2.4	7
5	Control of halogen interactions on morphology of metal-organic framework nanosheets. Solid State Sciences, 2021, 118, 106629.	1.5	5
6	Three new co-crystals of 2,3,5,6-tetramethyl pyrazin with different substituted aromatic compounds _ crystal structure, spectroscopy and Hirshfeld analysis. Journal of Molecular Structure, 2021, 1241, 130580.	1.8	3
7	Two-dimensional nanosheets of metal–organic frameworks with tailorable morphologies. Materials Today Chemistry, 2021, 22, 100517.	1.7	10
8	Humidity reduction by using hetero-layered metal–organic framework nanosheet composites as hygroscopic materials. Environmental Science: Nano, 2021, 8, 3665-3672.	2.2	11
9	Efficient mercury chloride capture by ultrathin 2D metal-organic framework nanosheets. Chemical Engineering Journal, 2020, 379, 122337.	6.6	41
10	Interconversion between nanoribbons and nanospheres mediated by detachable â€~invisibility suit'. Materials Today Nano, 2020, 9, 100068.	2.3	7
11	Ultra-thin two-dimensional nanosheets for in-situ NIR light-triggered fluorescence enhancement. FlatChem, 2020, 24, 100193.	2.8	10
12	Build 3D Nanoparticles by Using Ultrathin 2D MOF Nanosheets for NIR Light-Triggered Molecular Switching. ACS Applied Materials & Switching. ACS Applied Mate	4.0	16
13	Porphyrin-Based Hydrogen-Bonded Organic Frameworks for the Photocatalytic Degradation of 9,10-Diphenylanthracene. ACS Applied Nano Materials, 2019, 2, 7719-7727.	2.4	42
14	Ultralarge Dielectric Relaxation and Self-Recovery Triggered by Hydrogen-Bonded Polar Components. ACS Applied Materials & Dielectric Relaxation and Self-Recovery Triggered by Hydrogen-Bonded Polar Components.	4.0	20
15	Molecular Disorder Induced by the Application of an External Magnetic Field during Crystal Growth. Journal of Physical Chemistry C, 2019, 123, 15230-15235.	1.5	1
16	Unraveling the Mechanisms of the Excitedâ€State Intermolecular Proton Transfer (ESPT) for a Dâ€Ï€â€A Molecular Architecture. Chemistry - A European Journal, 2019, 25, 8805-8812.	1.7	10
17	Atomically Thin Nanoribbons by Exfoliation of Hydrogen-Bonded Organic Frameworks for Drug Delivery. ACS Applied Nano Materials, 2019, 2, 2437-2445.	2.4	52
18	Ultrathin two-dimensional nanosheets meet upconverting nanoparticles: <i>ii situ</i> near-infrared triggered molecular switching. Journal of Materials Chemistry C, 2019, 7, 3965-3972.	2.7	16

#	Article	IF	Citations
19	Porous High-Valence Metal–Organic Framework Featuring Open Coordination Sites for Effective Water Adsorption. Inorganic Chemistry, 2019, 58, 3058-3064.	1.9	22
20	Comparison Between the Acidification of Acidic and Alkalic Groups. Crystal Growth and Design, 2019, 19, 437-443.	1.4	10
21	Protonation-induced ligand distortion of spin-crossover complexes. Inorganic Chemistry Communication, 2019, 102, 40-44.	1.8	O
22	Binding CO ₂ from Air by a Bulky Organometallic Cation Containing Primary Amines. ACS Applied Materials & Samp; Interfaces, 2018, 10, 9495-9502.	4.0	35
23	Bidirectional Photoswitching via Alternating NIR and UV Irradiation on a Core–Shell UCNP–SCO Nanosphere. ACS Applied Materials & Interfaces, 2018, 10, 16666-16673.	4.0	34
24	Thermal-Induced Dielectric Switching with 40K Wide Hysteresis Loop Near Room Temperature. Journal of Physical Chemistry Letters, 2018, 9, 2158-2163.	2.1	45
25	Confinement of Reagents in Crystalline Matrix with the Help of Magnetic Field. ChemistrySelect, 2018, 3, 71-76.	0.7	7
26	N-donor ligands-directed coordination of Zn- azido complexes. Inorganica Chimica Acta, 2018, 469, 424-430.	1.2	6
27	The length of ankyl chain tuning the structure and properties of organic assemblies composed of triazole and organic acids. Journal of Molecular Structure, 2018, 1153, 96-105.	1.8	4
28	Atomically Thin Two-Dimensional Nanosheets with Tunable Spin-Crossover Properties. Journal of Physical Chemistry Letters, 2018, 9, 7052-7058.	2.1	29
29	A Dynamic 3D Hydrogenâ€Bonded Organic Frameworks with Highly Water Affinity. Advanced Functional Materials, 2018, 28, 1804822.	7.8	80
30	Tuning the crystal structures of metal-tetraphenylporphines <i>via</i> a magnetic field. New Journal of Chemistry, 2018, 42, 12570-12575.	1.4	6
31	Single-Layered Two-Dimensional Metal–Organic Framework Nanosheets as an in Situ Visual Test Paper for Solvents. ACS Applied Materials & Samp; Interfaces, 2018, 10, 28860-28867.	4.0	64
32	Magenetic field induced proton transfer of 18-crown-6-ether/fluoroboric acid/water system: Crystal structure and Hirshfeld surfaces. Polyhedron, 2018, 153, 64-68.	1.0	2
33	Assembly of 6-aminonicotinic acid and inorganic anions into different dimensionalities: Crystal structure, absorption properties and Hirshfeld surface analysis. Polyhedron, 2017, 124, 243-250.	1.0	10
34	A strategy for photothermal conversion of polymeric nanoparticles by polyaniline for smart control of targeted drug delivery. Nanotechnology, 2017, 28, 165102.	1.3	28
35	Nearâ€Infrared Light and pH Dualâ€Responsive Targeted Drug Carrier Based on Coreâ€Crosslinked Polyaniline Nanoparticles for Intracellular Delivery of Cisplatin. Chemistry - A European Journal, 2017, 23, 5352-5360.	1.7	46
36	Effect of halogen bonding on supramolecular assembly and photophysical properties of diaryl oxalates. Structural Chemistry, 2017, 28, 1731-1742.	1.0	2

#	Article	IF	Citations
37	Tuning the structures and photophysical properties of 9,10-distyrylanthrance (DSA) via fluorine substitution. New Journal of Chemistry, 2017, 41, 4220-4233.	1.4	14
38	Protonation-induced color change of an amino group functionalized [Fe 4 ($\hat{l}\frac{1}{4}$ 3 -O) 2] 8+ cluster. Dyes and Pigments, 2017, 143, 239-244.	2.0	18
39	Selective separation of aqueous sulphate anions via crystallization of sulphate–water clusters. CrystEngComm, 2017, 19, 3362-3369.	1.3	9
40	Reversibly Stretching Cocrystals by the Application of a Magnetic Field. Crystal Growth and Design, 2017, 17, 2576-2583.	1.4	19
41	A Twoâ€Dimensional Supramolecular Ice Layer Containing "Quasiâ€Chair―(H ₂ 0) ₆ Hexagons Templated by Organic Carboxylic Host. ChemistrySelect, 2017, 2, 61-64.	0.7	15
42	Enhanced cytotoxicity by a benzothiazole-containing cisplatin derivative in breast cancer cells. New Journal of Chemistry, 2017, 41, 773-785.	1.4	18
43	Complexation of different transition metals with 4-(4-carboxyphenyl)-1,2,4-triazole: Synthesis, crystal structure and hirshfeld surfaces. Journal of Molecular Structure, 2017, 1149, 136-141.	1.8	2
44	Halogen-bonding contacts determining the crystal structure and fluorescence properties of organic salts. New Journal of Chemistry, 2017, 41, 9444-9452.	1.4	4
45	Substituent swap affects the crystal structure and properties of N-benzyl-4-amino-1,2,4-triazole related organic salts. New Journal of Chemistry, 2017, 41, 13846-13854.	1.4	1
46	Anionsâ€Mediated Morphological Control of Nano―/Microscaled Materials: A Case Study of Protonated Melamineâ€Based Selfâ€Assemblies. ChemistrySelect, 2017, 2, 10505-10511.	0.7	2
47	Re-arrangements of 4-[(4H-1,2,4-triazol-4-ylimino)methyl]phenol with different inorganic anions: Crystal structure and fluorescence properties. Polyhedron, 2017, 133, 203-212.	1.0	1
48	Near infrared radiated stimulus-responsive liposomes based on photothermal conversion as drug carriers for co-delivery of CJM126 and cisplatin. Materials Science and Engineering C, 2017, 80, 362-370.	3.8	29
49	Two complexes of copper (II) and cobalt (II) with N,O-chelating heterocyclic carboxylates: Crystal structures, Hirshfeld surfaces, and thermal properties. Inorganic and Nano-Metal Chemistry, 2017, 47, 493-499.	0.9	2
50	Co-crystallization of a benzimidazole derivative with carboxylic acids. Research on Chemical Intermediates, 2017, 43, 817-828.	1.3	2
51	Influence of chlorine substitution on the crystal structures of diaryl oxalate. Research on Chemical Intermediates, 2017, 43, 1591-1607.	1.3	O
52	Study of spin crossover in an iron(II) tris(diimine) system tuned by counter anions. Polyhedron, 2017, 121, 101-106.	1.0	20
53	Ligand field tuned spin crossover for an iron(II)-di(diamine) system. Inorganica Chimica Acta, 2016, 450, 8-11.	1.2	8
54	Lanthanide-based coordination compounds based on 4-(4-carboxyphenyl)-1,2,4-triazole: synthesis, structures, Hirshfeld surface and luminescence properties. New Journal of Chemistry, 2016, 40, 3892-3898.	1.4	9

#	Article	IF	CITATIONS
55	Synthesis, Structural Characterization, and Magnetic Properties of Two Iron(II) Complexes With Triazole- and Imidazole-Related Ligands. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2016, 46, 1725-1734.	0.6	O
56	Synthesis, crystal structure, Hirshfeld surface analysis and DNA binding properties of interactions with lattice pyrazinamide and its zinc(II) coordination polymer. Research on Chemical Intermediates, 2016, 42, 6947-6957.	1.3	3
57	Complexation of different transition metals with 4,4′-dimethyl-2,2′-bipyridine: Crystal structure, UV spectra and Hirshfeld surfaces. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2016, 166, 1-7.	2.0	18
58	Magnetic observation of above room-temperature spin transition in vesicular nano-spheres. Journal of Materials Chemistry C, 2016, 4, 8061-8069.	2.7	50
59	Ambient-Temperature Spin-State Switching Achieved by Protonation of the Amino Group in [Fe(H ₂ Bpz ₂) ₂ (bipy-NH ₂)]. Inorganic Chemistry, 2016, 55, 8147-8152.	1.9	66
60	Influence of Halogen Atoms on Spinâ€Crossover Properties of 1,2,4â€Triazoleâ€Based 1D Iron(II) Polymers. ChemistrySelect, 2016, 1, 3879-3884.	0.7	15
61	Counter-anions-tuned crystal structure and intermolecular interactions of a series of iron (II) complexes derived from 4,4′-dimethyl-2,2′-bipyridine. Molecular Crystals and Liquid Crystals, 2016, 631, 132-143.	0.4	1
62	Investigation of two 2D interpenetration iron(II) coordination polymers. Polyhedron, 2016, 110, 241-246.	1.0	11
63	Crystals of 4-(2-benzimidazole)-1,2,4-triazole and its hydrate: preparations, crystal structure and Hirshfeld surfaces analysis. Research on Chemical Intermediates, 2016, 42, 3157-3168.	1.3	45
64	The influence of perchloric acid on 2,3-dimethylpyrazine and 1,2-bis(4-pyridyl)ethane: crystal structure and Hirshfeld surfaces analysis. Research on Chemical Intermediates, 2016, 42, 673-685.	1.3	1
65	Quantitative comparisons between \hat{l}_{\pm} , \hat{l}^2 , \hat{l}^3 , and \hat{l}' pyrazinamide (PZA) polymorphs. Research on Chemical Intermediates, 2015, 41, 7059-7072.	1.3	21
66	Effective Laboratory-Scale Preparation of Axitinib by Two Cul-Catalyzed Coupling Reactions. Organic Process Research and Development, 2015, 19, 849-857.	1.3	18
67	Influence of halogen atoms on the structures and photophysical properties of 9,10-distyrylanthracene (DSA). CrystEngComm, 2015, 17, 9228-9239.	1.3	14
68	Guest molecules dependent structures, intermolecular interactions and magnetic properties of iron (II) polymer with $4,4\hat{a}\in^2$ -dipyridyl disulfide. Inorganica Chimica Acta, 2015, 425, 255-259.	1.2	11
69	Ligand field and intermolecular interactions tuning the magnetic properties of spin-crossover Fe(II) polymer with 4,4′-bipyridine. Journal of Solid State Chemistry, 2015, 222, 76-83.	1.4	11
70	Methoxy- and methyl-substituted indole-3-acetonitrile (IAN): crystal structure and Hirshfeld surfaces analysis. Research on Chemical Intermediates, 2015, 41, 2915-2927.	1.3	0
71	Synthesis, co-crystal structure and characterization of pyrazinamide with m-hydroxybenzoic acid, p-hydroxybenzoic acid and 3,4-dihydroxy benzolic acid. Research on Chemical Intermediates, 2015, 41, 2939-2951.	1.3	15
72	Influences of halogen atoms on indole-3-acetonitrile (IAN): Crystal structure and Hirshfeld surfaces analysis. Journal of Molecular Structure, 2014, 1076, 679-686.	1.8	8

#	Article	IF	CITATIONS
73	A thermally labile copper (II) complex with hetero N- and O-donor ligands: Crystal structure, Hirshfeld surfaces, thermal and luminescent properties. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2014, 122, 246-251.	2.0	3
74	Selection of excipients for dispersible tablets of itraconazole through the application of thermal techniques and Raman spectroscopy. Journal of Thermal Analysis and Calorimetry, 2014, 115, 2391-2400.	2.0	10
75	Crystal structure, Hirshfeld surfaces and DNA cleavage investigation of two copper(II) complexes containing polypyridine and salicylide ligands. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2014, 126, 81-85.	2.0	5
76	Co-crystallization of pyridine-2-carboxamide with a series of alkyl dicarboxylic acids with different carbon chain: Crystal structure, spectroscopy and Hirshfeld analysis. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2014, 120, 228-236.	2.0	21
77	Lattice water molecules tuned spin-crossover for an iron(<scp>ii</scp>) complex with thermal hysteresis. Dalton Transactions, 2014, 43, 16937-16942.	1.6	22
78	Mixed azide and substituted 1,2,4-triazole co-ligand bridged 1D chain cadmium(ii) motif: crystal structure, Hirshfeld surfaces and spectroscopic studies. RSC Advances, 2014, 4, 11698.	1.7	10
79	Supramolecular assembly and host–guest interaction of crown ether with inorganic acid and organic amine containing carboxyl groups. New Journal of Chemistry, 2014, 38, 723-729.	1.4	33
80	Positions of amino groups on ammonium salts tunes the conformations of crown ethers: crystal structures, Hirshfeld surfaces and spectroscopic studies. CrystEngComm, 2014, 16, 5319-5330.	1.3	17
81	Two new complexes with 6-methylnicotinic acid ligand: Synthesis, crystal structure and Hirshfeld surfaces. Inorganica Chimica Acta, 2014, 412, 60-66.	1.2	23
82	Inorganic anions dependent orientation of ammonium cations in crown ether–ammonium cation–inorganic anion system. Polyhedron, 2014, 69, 160-166.	1.0	14
83	Two new metastable forms of 6-chloroquinolin-2(1H)-one: Crystal structure, Hirshfeld surfaces and spectroscopic studies. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2014, 120, 381-388.	2.0	13
84	Antisolvent Crystallization of Biapenem: Estimation of Growth and Nucleation Kinetics. Journal of Chemical & Engineering Data, 2013, 58, 588-597.	1.0	35
85	Complexation of different metals with a novel N-donor bridging receptor and Hirshfeld surfaces analysis. Inorganica Chimica Acta, 2013, 397, 1-9.	1.2	59
86	An investigation into the substituent effect of halogen atoms on the crystal structures of indole-3-carboxylic acid (ICA). CrystEngComm, 2013, 15, 7490.	1.3	31
87	A novel Cull–azido-pyrazine framework with 3D-42.63.8-topology: Crystal structure and magnetic property. Inorganica Chimica Acta, 2013, 404, 188-191.	1.2	15
88	Monitoring the Crystallization Process of Methylprednisolone Hemisuccinate (MPHS) from Ethanol Solution by Combined ATR-FTIR- FBRM- PVM. Separation Science and Technology, 2013, 48, 1881-1890.	1.3	14
89	Pharmaceutical Co-Crystals of Pyrazinecarboxamide (PZA) with Various Carboxylic Acids: Crystallography, Hirshfeld Surfaces, and Dissolution Study. Crystal Growth and Design, 2013, 13, 2098-2106.	1.4	100
90	Investigation of supramolecular synthons of p-hydroxybenzoic acid (PHBA): Comparison of its hydrate, co-crystal and salt. Journal of Crystal Growth, 2013, 374, 88-98.	0.7	34

#	Article	IF	CITATIONS
91	Two Novel Salts of Tris(hydroxymethyl)aminomethane (THAM): Synthesis, Crystal Structure, Thermal and Hirshfeld Surfaces Analysis. Journal of Chemical Crystallography, 2013, 43, 576-584.	0.5	8
92	Synthesis, Crystal Structure and Dna Binding Properties of a New Member of the [Mn ₃ Zn ₂] ¹³⁺ Complex Family. Journal of Chemical Research, 2012, 36, 506-509.	0.6	11
93	Synthesis, Crystal Structure and Hirshfeld Surfaces of a Cu ^{II} complex with an ICL670-related ligand. Journal of Chemical Research, 2012, 36, 697-700.	0.6	20
94	Two new one-dimensional coordination polymers containing [N(CN)2]–— Syntheses, structures, and magnetic properties of [MII(3- Bzpy)2(N(CN)2)2] (MÂ= Mn (1) and Co (2) and 3-Bzpy = 3-benzoylpyridine). Canadian Journal of Chemistry, 2012, 90, 362-367.	0.6	1
95	5-Chloro-1H-indole-3-carboxylic acid. Acta Crystallographica Section E: Structure Reports Online, 2012, 68, o145-o145.	0.2	2
96	3-[(E)-2-Phenylethenyl]-1H-indole-6-carbonitrile. Acta Crystallographica Section E: Structure Reports Online, 2012, 68, o207-o207.	0.2	0
97	6-Fluoro-1H-indole-3-carboxylic acid. Acta Crystallographica Section E: Structure Reports Online, 2012, 68, o1580-o1580.	0.2	2
98	Paliperidonium nitrate. Acta Crystallographica Section E: Structure Reports Online, 2012, 68, o2932-o2932.	0.2	1
99	6-[(E)-2-Phenylvinyl]-1H-indole. Acta Crystallographica Section E: Structure Reports Online, 2012, 68, o73-o73.	0.2	O
100	(5-Methoxy-1H-indol-3-yl)acetonitrile. Acta Crystallographica Section E: Structure Reports Online, 2012, 68, o66-o66.	0.2	1
101	6-Chloroquinolin-2(1 <i>H</i>)-one. Acta Crystallographica Section E: Structure Reports Online, 2012, 68, o188-o188.	0.2	2
102	2-(4-Methoxy-1H-indol-3-yl)acetonitrile. Acta Crystallographica Section E: Structure Reports Online, 2012, 68, o143-o143.	0.2	1
103	2-(6-Chloro-1H-indol-3-yl)acetonitrile. Acta Crystallographica Section E: Structure Reports Online, 2012, 68, o144-o144.	0.2	1
104	2-(7-Methyl-1H-indol-3-yl)acetonitrile. Acta Crystallographica Section E: Structure Reports Online, 2012, 68, o141-o141.	0.2	4
105	5-Fluoro-1H-indole-3-carboxylic acid. Acta Crystallographica Section E: Structure Reports Online, 2012, 68, o187-o187.	0.2	2
106	4-Nitroisophthalic acid. Acta Crystallographica Section E: Structure Reports Online, 2012, 68, o206-o206.	0.2	7
107	2-(4-Chloro-1H-indol-3-yl)acetonitrile. Acta Crystallographica Section E: Structure Reports Online, 2012, 68, o203-o203.	0.2	1
108	A cocrystal strategy for the precipitation of liquid 2,3-dimethyl pyrazine with hydroxyl substituted benzoic acid and a Hirshfeld surfaces analysis of them. CrystEngComm, 2012, 14, 6860.	1.3	58

Yang-Hui Luo

#	Article	IF	CITATIONS
109	DNA Binding and Cleavage Studies of Dichlorido[Bis(2-Ethyl-5-Methyl-1H-Imidazol-4-yl-κN3)Methane]Cobalt(II) Monohydrate. Journal of Chemical Crystallography, 2012, 42, 423-426.	0.5	3
110	Syntheses, Crystal Structure and Properties of Two 1-D Coordination Polymers Bridged by Dicyanamides. Journal of Chemical Crystallography, 2012, 42, 628-632.	0.5	19
111	Aqua[bis(2-ethyl-5-methyl-1H-imidazol-4-yl-îºN3)methane]oxalatocopper(II) dihydrate. Acta Crystallographica Section E: Structure Reports Online, 2011, 67, m172-m172.	0.2	8
112	2,4-Dibromo-6-[(hydroxyimino)methyl]phenol. Acta Crystallographica Section E: Structure Reports Online, 2011, 67, o2099-o2099.	0.2	6
113	Bis[bis(2-ethyl-5-methyl-1H-imidazol-4-yl-κN3)methane](nitrato-κ2O,O′)nickel(II) nitrate. Acta Crystallographica Section E: Structure Reports Online, 2011, 67, m212-m212.	0.2	1
114	Dichlorido[bis(2-ethyl-5-methyl-1H-imidazol-4-yl-κN3)methane]cobalt(II) monohydrate. Acta Crystallographica Section E: Structure Reports Online, 2011, 67, m575-m575.	0.2	2
115	6-Methylnicotinic acid. Acta Crystallographica Section E: Structure Reports Online, 2011, 67, o2345-o2345.	0.2	2
116	5-Methyl-1,2-oxazole-3-carboxylic acid. Acta Crystallographica Section E: Structure Reports Online, 2011, 67, o2545-o2545.	0.2	0
117	Crystal structure of 5,11,17,23-tetrabromo-25,27-dihydroxy- 26,28-dimethoxycalix[4]arene, C30H24Br4O4. Zeitschrift Fur Kristallographie - New Crystal Structures, 2006, 221, 327-328.	0.1	0