
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5055217/publications.pdf Version: 2024-02-01

AMALIA RADONE

#	Article	IF	CITATIONS
1	The tomato genome sequence provides insights into fleshy fruit evolution. Nature, 2012, 485, 635-641.	13.7	2,860
2	Enhancing the Health-Promoting Effects of Tomato Fruit for Biofortified Food. Mediators of Inflammation, 2014, 2014, 1-16.	1.4	189
3	RFLP mapping on potato chromosomes of two genes controlling extreme resistance to potato virus X (PVX). Molecular Genetics and Genomics, 1991, 227, 81-85.	2.4	167
4	Localization by restriction fragment length polymorphism mapping in potato of a major dominant gene conferring resistance to the potato cyst nematode Globodera rostocbiensis. Molecular Genetics and Genomics, 1990, 224, 177-182.	2.4	150
5	The ascorbic acid content of tomato fruits is associated with the expression of genes involved in pectin degradation. BMC Plant Biology, 2010, 10, 163.	1.6	103
6	Exploring a Tomato Landraces Collection for Fruit-Related Traits by the Aid of a High-Throughput Genomic Platform. PLoS ONE, 2015, 10, e0137139.	1.1	91
7	Bioactive Compounds in Brassicaceae Vegetables with a Role in the Prevention of Chronic Diseases. Molecules, 2018, 23, 15.	1.7	86
8	Endosperm balance number manipulation for direct in vivo germplasm introgression to potato from a sexually isolated relative (Solanum commersonii Dun.). Proceedings of the National Academy of Sciences of the United States of America, 1997, 94, 12013-12017.	3.3	85
9	An association mapping approach to identify favourable alleles for tomato fruit quality breeding. BMC Plant Biology, 2014, 14, 337.	1.6	84
10	The Use of a Plant-Based Biostimulant Improves Plant Performances and Fruit Quality in Tomato Plants Grown at Elevated Temperatures. Agronomy, 2020, 10, 363.	1.3	75
11	A Snapshot of the Emerging Tomato Genome Sequence. Plant Genome, 2009, 2, .	1.6	73
12	Molecular marker-assisted selection for potato breeding. American Journal of Potato Research, 2004, 81, 111-117.	0.5	71
13	Ploidy level manipulations in potato through sexual hybridisation. Annals of Applied Biology, 2005, 146, 71-79.	1.3	68
14	Antioxidant bioactive compounds in tomato fruits at different ripening stages and their effects on normal and cancer cells. Journal of Functional Foods, 2015, 18, 83-94.	1.6	67
15	Metabolite Profiling of Italian Tomato Landraces with Different Fruit Types. Frontiers in Plant Science, 2016, 7, 664.	1.7	65
16	Quantitative Trait Loci Pyramiding Can Improve the Nutritional Potential of Tomato (<i>Solanum) Tj ETQq0 0 0 r</i>	rgBT /Over 2.4	loc <u>k</u> 10 Tf 50
17	Vitamin E Content and Composition in Tomato Fruits: Beneficial Roles and Bio-Fortification. International Journal of Molecular Sciences, 2015, 16, 29250-29264.	1.8	54

¹⁸Heterozygosity in 2n gametes of potato evaluated by RFLP markers. Theoretical and Applied Genetics,
1995, 91, 98-104.1.851

#	Article	IF	CITATIONS
19	Quantitative trait loci pyramiding for fruit quality traits in tomato. Molecular Breeding, 2013, 31, 217-222.	1.0	51
20	Identification of candidate genes for phenolics accumulation in tomato fruit. Plant Science, 2013, 205-206, 87-96.	1.7	51
21	Unraveling the complexity of transcriptomic, metabolomic and quality environmental response of tomato fruit. BMC Plant Biology, 2017, 17, 66.	1.6	48
22	Structural and Functional Genomics of Tomato. International Journal of Plant Genomics, 2008, 2008, 1-12.	2.2	46
23	An ascorbic acid-enriched tomato genotype to fight UVA-induced oxidative stress in normal human keratinocytes. Journal of Photochemistry and Photobiology B: Biology, 2016, 163, 284-289.	1.7	46
24	Pectic enzymes as potential enhancers of ascorbic acid production through the D -galacturonate pathway in Solanaceae. Plant Science, 2018, 266, 55-63.	1.7	46
25	Exploiting Genetic and Genomic Resources to Enhance Heat-Tolerance in Tomatoes. Agronomy, 2019, 9, 22.	1.3	45
26	Carotenoids in fresh and processed tomato (<i>Solanum lycopersicum</i>) fruits protect cells from oxidative stress injury. Journal of the Science of Food and Agriculture, 2017, 97, 1616-1623.	1.7	42
27	High-Throughput Genomics Enhances Tomato Breeding Efficiency. Current Genomics, 2009, 10, 1-9.	0.7	40
28	Selection for aneuploid potato hybrids combining a low wild genome content and resistance traits from Solanum commersonii. Theoretical and Applied Genetics, 2004, 109, 1139-1146.	1.8	37
29	A Novel Protein Hydrolysate-Based Biostimulant Improves Tomato Performances under Drought Stress. Plants, 2021, 10, 783.	1.6	37
30	Selection of tomato landraces with high fruit yield and nutritional quality under elevated temperatures. Journal of the Science of Food and Agriculture, 2020, 100, 2791-2799.	1.7	35
31	Resistance to Ralstonia solanacearum of Sexual Hybrids Between Solanum commersonii and S. tuberosum. American Journal of Potato Research, 2009, 86, 196-202.	0.5	34
32	Molecular marker-assisted introgression of the wild Solanum commersonii genome into the cultivated S. tuberosum gene pool. Theoretical and Applied Genetics, 2001, 102, 900-907.	1.8	33
33	Dissection of genetic and environmental factors involved in tomato organoleptic quality. BMC Plant Biology, 2011, 11, 58.	1.6	33
34	Patchwork sequencing of tomato San Marzano and Vesuviano varieties highlights genome-wide variations. BMC Genomics, 2014, 15, 138.	1.2	32
35	Biochemical, sensorial and genomic profiling of traditional Italian tomato varieties. Euphytica, 2008, 164, 571-582.	0.6	31
36	Production of Pharmaceutical Proteins in Solanaceae Food Crops. International Journal of Molecular Sciences, 2013, 14, 2753-2773.	1.8	31

#	Article	IF	CITATIONS
37	Eco-physiological response to water stress of drought-tolerant and drought-sensitive tomato genotypes. Plant Biosystems, 2016, 150, 682-691.	0.8	30
38	Accelerating Tomato Breeding by Exploiting Genomic Selection Approaches. Plants, 2020, 9, 1236.	1.6	30
39	Exploiting Genomics Resources to Identify Candidate Genes Underlying Antioxidants Content in Tomato Fruit. Frontiers in Plant Science, 2016, 7, 397.	1.7	29
40	Evaluation and use of plant biodiversity for food and pharmaceuticals. Fìtoterapìâ, 2000, 71, S66-S72.	1.1	28
41	Integrated bioinformatics to decipher the ascorbic acid metabolic network in tomato. Plant Molecular Biology, 2016, 91, 397-412.	2.0	26
42	A novel synthetic peptide from a tomato defensin exhibits antibacterial activities against <i>Helicobacter pylori</i> . Journal of Peptide Science, 2012, 18, 755-762.	0.8	24
43	Metabolic and Molecular Changes of the Phenylpropanoid Pathway in Tomato (Solanum lycopersicum) Lines Carrying Different Solanum pennellii Wild Chromosomal Regions. Frontiers in Plant Science, 2016, 7, 1484.	1.7	23
44	Transcriptional Regulation of Ascorbic Acid During Fruit Ripening in Pepper (Capsicum annuum) Varieties with Low and High Antioxidants Content. Plants, 2019, 8, 206.	1.6	23
45	New insights in the control of antioxidants accumulation in tomato by transcriptomic analyses of genotypes exhibiting contrasting levels of fruit metabolites. BMC Genomics, 2019, 20, 43.	1.2	23
46	Eco-Physiological Screening of Different Tomato Genotypes in Response to High Temperatures: A Combined Field-to-Laboratory Approach. Plants, 2020, 9, 508.	1.6	23
47	Cytological evidences of SDR-FDR mixture in the formation of 2n eggs in a potato diploid clone. Theoretical and Applied Genetics, 1991, 81, 59-63.	1.8	21
48	Identification of single nucleotide polymorphisms in Toll-like receptor candidate genes associated with tuberculosis infection in water buffalo (Bubalus bubalis). BMC Genetics, 2014, 15, 139.	2.7	21
49	Phenotyping to dissect the biostimulant action of a protein hydrolysate in tomato plants under combined abiotic stress. Plant Physiology and Biochemistry, 2022, 179, 32-43.	2.8	20
50	Bioactive Compound Content and Cytotoxic Effect on Human Cancer Cells of Fresh and Processed Yellow Tomatoes. Molecules, 2016, 21, 33.	1.7	18
51	Identification of tomato accessions as source of new genes for improving heat tolerance: from controlled experiments to field. BMC Plant Biology, 2021, 21, 345.	1.6	18
52	Evidence for tetrasomic inheritance in a tetraploid Solanum commersonii (+) S. tuberosum somatic hybrid through the use of molecular markers. Theoretical and Applied Genetics, 2002, 104, 539-546.	1.8	17
53	Glycoalkaloids and acclimation capacity of hybrids between Solanum tuberosum and the incongruent hardy species Solanum commersonii. Theoretical and Applied Genetics, 2003, 107, 1187-1194.	1.8	16
54	High-Throughput Genotyping of Resilient Tomato Landraces to Detect Candidate Genes Involved in the Response to High Temperatures. Genes, 2020, 11, 626.	1.0	16

#	Article	IF	CITATIONS
55	Dissecting a QTL into Candidate Genes Highlighted the Key Role of Pectinesterases in Regulating the Ascorbic Acid Content in Tomato Fruit. Plant Genome, 2015, 8, eplantgenome2014.08.0038.	1.6	16
56	Tuber quality and soft rot resistance of hybrids betweenSolarium tuberosum and the incongruent wild relativeS. commersonii. American Journal of Potato Research, 2002, 79, 345-352.	0.5	14
57	Phenotypic and Molecular Selection of a Superior Solanum pennellii Introgression Sub-Line Suitable for Improving Quality Traits of Cultivated Tomatoes. Frontiers in Plant Science, 2019, 10, 190.	1.7	14
58	Tomato genomic prediction for good performance under high-temperature and identification of loci involved in thermotolerance response. Horticulture Research, 2021, 8, 212.	2.9	14
59	A basic Helix-Loop-Helix (SIARANCIO), identified from a Solanum pennellii introgression line, affects carotenoid accumulation in tomato fruits. Scientific Reports, 2019, 9, 3699.	1.6	13
60	Genetic Diversity within Wild Potato Species (Solanum spp.) Revealed by AFLP and SCAR Markers. American Journal of Plant Sciences, 2010, 01, 95-103.	0.3	12
61	Host and Nonâ€Host Plant Response to Bacterial Wilt in Potato: Role of the Lipopolysaccharide Isolated from <i>Ralstonia solanacearum</i> and Molecular Analysis of Plant–Pathogen Interaction. Chemistry and Biodiversity, 2008, 5, 2662-2675.	1.0	11
62	A comparative study of the physicoâ€chemical properties affecting the organoleptic quality of fresh and thermally treated yellow tomato ecotype fruit. International Journal of Food Science and Technology, 2018, 53, 1219-1226.	1.3	11
63	Use of seedling tubers from TPS in southern Italy. American Potato Journal, 1994, 71, 29-38.	0.4	8
64	Chromosome pairing in Solanum commersonii- S. tuberosum sexual hybrids detected by commersonii-specific RAPDs and cytological analysis. Genome, 1999, 42, 218-224.	0.9	8
65	Exploiting the great potential of Sequence Capture data by a new tool, SUPER-CAP. DNA Research, 2016, 24, dsw050.	1.5	8
66	Comparative Transcriptomic Profiling of Two Tomato Lines with Different Ascorbate Content in the Fruit. Biochemical Genetics, 2012, 50, 908-921.	0.8	7
67	Positive selection in the leucine-rich repeat domain of Gro1 genes in Solanum species. Journal of Genetics, 2014, 93, 755-765.	0.4	7
68	Genomic Dissection of a Wild Region in a Superior Solanum pennellii Introgression Sub-Line with High Ascorbic Acid Accumulation in Tomato Fruit. Genes, 2020, 11, 847.	1.0	7
69	Chromosome pairing in <i>Solanum commersonii</i> - <i> S. tuberosum</i> sexual hybrids detected by <i>commersonii</i> -specific RAPDs and cytological analysis. Genome, 1999, 42, 218-224.	0.9	6
70	Impact of Wild Loci on the Allergenic Potential of Cultivated Tomato Fruits. PLoS ONE, 2016, 11, e0155803.	1.1	4
71	Accelerating the Development of Heat Tolerant Tomato Hybrids through a Multi-Traits Evaluation of Parental Lines Combining Phenotypic and Genotypic Analysis. Plants, 2021, 10, 2168.	1.6	3
72	A Novel Plant-Based Biostimulant Improves Plant Performances under Drought Stress in Tomato. Biology and Life Sciences Forum, 2021, 4, 52.	0.6	2

#	Article	IF	CITATIONS
73	Genome Analysis of Species of Agricultural Interest. Springer Optimization and Its Applications, 2009, , 385-402.	0.6	1
74	Knowledge on the Genomes of Wild Tomato Species is the Key to Unlocking Their Breeding Potential. Compendium of Plant Genomes, 2021, , 155-166.	0.3	0
75	Higher Yield and Fruit Quality of a Solanum pennellii Introgression Line. Biology and Life Sciences Forum, 2021, 3, 31.	0.6	0
76	One Plant-Based Biostimulant Stimulates Good Performances of Tomato Plants Grown in Open Field. Biology and Life Sciences Forum, 2021, 3, .	0.6	0